2018 Updates for Neoplasms of the Lung

2017-2018 FCDS Educational Webcast Series
Steven Peace, CTR
November 16, 2017

The Great American Smokeout

When trying to quit smoking, support can make all the difference.
#GASO

CDC & Florida DOH Attribution

“We acknowledge the Centers for Disease Control and Prevention, for its support of the Florida Cancer Data System, and the printing and distribution of the materials for the 2017-2018 FCDS Webcast Series under cooperative agreement 1NU58DP006350 awarded to the Florida Department of Health. The findings and conclusions in this series are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention”.

FCDS would also like to acknowledge the Florida Department of Health for its support of the Florida Cancer Data System, including the development, printing and distribution of materials for the 2017-2018 FCDS Webcast Series under state contract CODJU. The findings and conclusions in this series are those of the author(s) and do not necessarily represent the official position of the Florida Department of Health.
FLccSC LMS – CEU Quiz – FCDS IDEA

- Florida has changed how we track webcast attendance
- Florida has changed how we award CEUs for our webcast series
- Attendees must take and pass a 3-5 question CEU Quiz to be awarded CEUs
- Only registered FLccSC Users will be given access to the CEU Quiz
- Florida attendees must have a Florida FLccSC Account & pass the quiz to get CEUs
- South Carolina attendees must have a South Carolina FLccSC Account & pass the quiz to get CEUs
- Other Attendees can attend the live webcasts but cannot receive CEUs for attendance at this time
- Please remember this is a new system with new requirements - some still being worked out
- The CEU Quiz should be available about an hour after the webcast ends

Presentation Outline

- Overview of Neoplasms of the Lung
- FCDS Lung Audits – 2014/2015 Diagnosis
- Anatomy of the Thorax – Lung & Pleura
- WHO Neoplasms of the Lung – 4th edition
- 2018 ICD-0-3 Lung Histology Codes
- 2018 MPH Lung Rules – Pending
- 2018 Anatomic Staging – SS2018 – Pending
- 2018 Anatomic Staging – AJCC TNM 8th edition
- 2018 Non-Anatomic Site-Specific Data Items (SSDI)
- Importance of Text Documentation
- Practice Cases - Pending
- Questions

11/13/2017
Overview

Figure 3. Leading Sites of New Cancer Cases and Deaths – 2017 Estimates

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>105,360</td>
</tr>
<tr>
<td>Breast</td>
<td>250,730</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>200,350</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>148,000</td>
</tr>
<tr>
<td>Lymphatic system</td>
<td>100,820</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>40,020</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>40,300</td>
</tr>
<tr>
<td>Leukemia</td>
<td>36,080</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>35,720</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>29,200</td>
</tr>
<tr>
<td>All sites</td>
<td>836,150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>94,590</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>40,410</td>
</tr>
<tr>
<td>Prostate</td>
<td>24,700</td>
</tr>
<tr>
<td>Pancreas</td>
<td>22,300</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>29,930</td>
</tr>
<tr>
<td>Leukemia</td>
<td>14,300</td>
</tr>
<tr>
<td>Esophagus</td>
<td>13,720</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>13,240</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>11,450</td>
</tr>
<tr>
<td>Brain & other nervous system</td>
<td>9,520</td>
</tr>
<tr>
<td>All sites</td>
<td>389,420</td>
</tr>
</tbody>
</table>

Estimated New Cases
Estimated Deaths

Estimates are rounded to the nearest 10 and cases exclude basal cell and squamous cell skin cancers and in situ carcinomas except urinary bladder.

©2017 American Cancer Society, Inc., Surveillance Research

Figure 1. Trends in Age-adjusted Cancer Death Rates* by Sex, Males, US, 1930-2014

*Per 100,000, age adjusted to the 2000 US standard population. Mortality rates for pancreatic and liver cancers are increasing.

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the liver, lung and bronchus, uterus, and colon and rectum are affected by these coding changes.

©2017, American Cancer Society, Inc., Surveillance Research
Figure 2. Trends in Age-adjusted Cancer Death Rates* by Site, Females, US, 1930-2014

*Per 100,000, age adjusted to the 2000 US standard population. Uterus refers to uterine cervix and uterine corpus combined. The mortality rate for liver cancer is increasing. Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancer of the liver, lung and bronchus, uterus, and colon and rectum are affected by these coding changes.

Trends in Tobacco Use and Lung Cancer Death Rates* in the US

*Age-adjusted to 2000 US standard population.

U.S. Adult Smoking Rates

DANGEROUS CHEMICALS IN ALL TOBACCO

ALL TOBACCO PRODUCTS CONTAIN DANGEROUS CHEMICALS. NOT JUST CIGARETTES.
Association with Smoking

Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA (2008),
Tobacco Control 17 (3): 198-204

E-Cigarette Use

Florida Registrars
Code E-Cigarettes in Field
✓ Tobacco Use, NOS

E-Cigarette Use

- E-cigarettes have only been readily available in the United States since 2006. As a result, there’s limited research on their health risks.
- Question Remains: Are e-cigarettes safer than smoking?
- People who use e-cigarettes while still smoking do not reduce the levels of toxic chemicals they were exposed to. And, a large number of e-cigarette users do still smoke.
- “The full benefit of using e-cigarettes is from completely stopping smoking,” says Shahab. “Any health benefits come from dramatic reductions in these chemicals, and we’re not seeing this in people that use both e-cigarettes and combustible cigarettes.”
- And although this study found significantly lower levels of these substances in vapers than smokers, the chemicals are still there.
- Does this study confirm that e-cigarettes are safer than smoking. Concerns remain...
- Why? E-cigarettes do not contain tobacco. Instead, they carry a nicotine-containing liquid which is heated into a vapour and breathed in. The nicotine satisfies the cravings associated with a smoking addiction, but doesn’t cause cancer...or does it?

Radon Gas

http://pillartopost.com/epa
FCDS Lung Audits – 2014/2015 Diagnosis

- Clarify the Difference between Atelectasis, Obstructive Pneumonitis, Consolidation, and (Malignant/Non-Malignant) Pleural Effusion
 - Atelectasis/Pneumothorax = Complete or Partially Collapsed Lung
 - Pneumonitis - inflammation of the walls of the alveoli in the lungs, often caused by a virus.
 - Obstructive Pneumonitis – pneumonitis resulting in bronchial obstruction
 - Consolidation - a region of lung tissue that has filled with liquid or blood or pus instead of air
 - Pleural Effusion/Hemothorax - a buildup of extra fluid in the space between the lungs and the chest wall.
 - Most pleural effusions are hemorrhagic or bloody which indicates malignant pleural effusion without even looking at cytology
 - Any pleural effusion in lung cancer is deemed “malignant” and must be proven “negative” x 2-3 cytology examinations
 - When pleural effusion described as “minimal” or “small” it may not be ‘treated’ as with involvement – still code as malignant pleural effusion for consistency in staging cases
 - Primary Tumor Extension to either Pleura is not the same as pleural effusion

FCDS Lung Audits – 2014/2015 Diagnosis

- Tumor Size 000 (no evidence of primary tumor) vs. 999 (unk)
- Several Regional Lymph Node Issues
- N1, N2 and N3 are ALL “regional lymph nodes”

- Must look at whether hilar or mediastinal nodes – do not treat as same
- Coding FNA of Regional Lymph Node in Scope of Reg Lymph Node Surgery
- Coding Regional Lymph Nodes Examined / Regional Lymph Nodes Positive
- Disconnect between Surgery of Primary Site Code 30 versus 33 and “regional” node definitions – often code 33 is for mediastinal node removal

Source: International Association for the Study of Lung Cancer, 2008
Lung Anatomy

http://www.omnimedicalsearch.com/conditions-diseases/images/lung-cancer.jpg

http://www.damav.com/mare/lung/

http://legacy.owensboro.kctcs.edu
Lung Anatomy

C34.0 Main bronchus
C34.1 Upper lobe, lung
C34.2 Middle lobe, lung
(right lung only)
C34.3 Lower lobe, lung
C34.8 Overlapping lesion
C34.9 Lung, NOS

Source: SEER Training: ICD-O-3 Site Codes

Lung Anatomy

The hilum is the space in each lung where the bronchus and blood vessels enter the lung.

The apex is the rounded area at the top of each lung.

Source: 2008 Encyclopedia Britannica, Inc. on-line
Lung Anatomy

The lingula, found only in the left lung, is a projection of the upper lobe of the left lung thought to be a remnant of an ancient middle lobe of the left lung.

Source: SEER Training: ICD-O-3 Site Codes

Lung Anatomy

Source: Springer Images. Figure adapted from Atlas of Human Anatomy, 2nd ed. Contents of the superior and middle mediastinum. http://www.springerimages.com/Images/MedicineAndPublicHealth/1-10.1007_978-1-60327-372-5_4-9
Lung Anatomy

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastases
- **N1** Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension
- **N2** Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
- **N3** Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s)

IASLC lymph node map from Memorial Sloan-Kettering Cancer Center, 2009

Lung Anatomy

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastases
- **N1** Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension
- **N2** Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
- **N3** Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s)

IASLC lymph node map - WHO Classification of Tumours of the Lung, 2015

Lung Anatomy

A pleural effusion is an accumulation of fluid between the parietal pleura and the visceral pleura.

Chest X-ray frontal view: 100-200ml pleural fluid

Source: www.slideshare.net/pleuraleffusion/drmahesh
Lung Anatomy

Collaborative Stage Data Collection System, Part I Section II – Lab Tests, Tumor Markers, SSFs

Pleura Anatomy

2015 WHO Classification of Tumours of Lung, Pleura, Thymus & Heart, 4th ed.

Highlights
- Multi-Disciplinary Correlation
- Invasive Neoplasm classified according to predominant subtype
- Stop Using the Term “BAC” and “bronchio-alveolar carcinoma”
- Replace BAC with 5 new adenocarcinoma subtypes
 - Add “in situ” classification
 - Add “minimally invasive”
- Add genetic test/markers
 - EGFR, Alk, KRAS, TTF-1, p40
- SCC with minor changes

Small Biopsy and Cytology Specimens

<table>
<thead>
<tr>
<th>TABLE 3. Diagnostic Terminology for Small Biopsy/Cytology Compared with the 2015 WHO Terms in Resection Specimens with Small Cell Carcinoma, LCNEC, Adenosquamous Carcinoma, and Sarcomatoid Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Biopsy/Cytology Terminology/Criteria</td>
</tr>
<tr>
<td>Small cell carcinoma</td>
</tr>
<tr>
<td>NSCC with NE morphology and positive NE markers, possible LCNEC</td>
</tr>
<tr>
<td>NSCC with NE morphology, if negative NE markers comment: This is a NSCC where LCNEC is suspected, but stains failed to demonstrate NE differentiation.</td>
</tr>
<tr>
<td>Morphologic squamous cell and adenocarcinoma patterns present: NSCC, NOS</td>
</tr>
<tr>
<td>Comment that adenocarcinoma and squamous components are present and this could represent adenosquamous carcinoma.</td>
</tr>
<tr>
<td>Morphologic squamous cell or adenocarcinoma patterns not present but immunostains favor separate glandular and adenocarcinoma components: NSCC, NOS</td>
</tr>
<tr>
<td>Specify the results of the immunohistochemical stains and the interpretation comment this could represent adenosquamous carcinoma.</td>
</tr>
<tr>
<td>NSCC with spindle cell and/or giant cell carcinoma (mention if adenocarcinoma or squamous carcinoma are present)</td>
</tr>
</tbody>
</table>

*Modified from the article by Travis et al. 2015 |
LCNEC, large cell neuroendocrine carcinoma; NOS, not otherwise specified; NSCC, non–small cell carcinoma; NE, neuroendocrine; WHO, World Health Organization.
In the 2015 WHO classification, the term "predominant" is not listed in the name for the major adenocarcinoma subtypes as it was in the 2011 classification.

However, these tumors still should be classified according to the predominant subtype after evaluation of the tumor using comprehensive histologic subtyping.

While it is theoretically possible to have equal percentages of two prominent components, in practice, a single predominant component should be chosen.

Lepidic pattern is defined as a tumor composed of neoplastic cells lining the alveolar lining with no architectural disruption/complexity, and no lymphovascular and/or pleural invasion.

Acinar pattern is characterized by glandular formation.

Cribriform pattern shows distinctive holes in between the cancer cells - Swiss cheese.
Squamous Cell Carcinoma & Large Cell Carcinoma

- Squamous Cell - Similar to Head & Neck Nasopharyngeal Carcinoma Classification
 - Basaloid
 - Keratinizing
 - Non-Keratinizing

- Large Cell – cannot confirm this histology on small biopsy or cytology
 - Must be surgically resected tumor
 - Most previous subtypes have been reclassified and now in different groups
 - Solid Adenocarcinoma – reclassification of large cell based on TTF-1
 - Non-Keratinizing Squamous Cell Carcinoma – reclassification based on p40

Neuroendocrine Tumors

- Classified Similar to the GI Track Neuroendocrine Tumors

- NOW INCLUDES
 - Carcinoid Tumor of Lung – low grade neuroendocrine tumor
 - Small Cell Lung Carcinoma – Ki67 confirmation for high grade SCLC
 - Large Cell Carcinoma Not Elsewhere Classified

- Mitotic Count used to differentiate low/high grade
2018 ICD-0-3 Lung Histology Codes

- **8013/3** – Lung Only – Combined Large Cell Neuroendocrine Carcinoma
- **8023/3** – Nasal Cavity, Sinus & Lung – NUT Carcinoma
- **8140/2** – Lung Only – Adenocarcinoma in situ, non-mucinous
- **8250/2** – Lung Only – Minimally invasive Adenocarcinoma, non-mucinous
- **8250/3** – Lung Only – Lepidic Adenocarcinoma
- **8250/3** – Lung Only – Lepidic Predominant Adenocarcinoma
- **8253/2** – Lung Only – Adenocarcinoma in situ, mucinous
- **8257/3** – Lung Only – Minimally Invasive Adenocarcinoma
- **8845/2** – Lung Only – Pulmonary Myxoid Sarcoma with EWESRq-CREB1 translocation
- **8551/3** – Lung Only – Acinar Adenocarcinoma
- **8253/3** – Lung Only – Invasive Mucinous Adenocarcinoma
- **8253/3** – Lung Only – Bronchiolo-Alveolar Mucinous Type
- **8254/3** – Lung Only – Mixed Invasive Mucinous and Non-Mucinous Adenocarcinoma
- **8254/3** – Lung Only – Bronchiolo-Alveolar, Mixed Mucinous and Non-Mucinous

Mesothelioma (just a mention)

Mesothelioma

Mesothelioma is a rare form of cancer that develops from cells of the mesothelium, the protective lining that covers many of the internal organs of the body. Mesothelioma is most commonly caused by exposure to asbestos. There are four main types of mesothelioma, with the most common forms affecting the lining of the lungs or abdominal cavity.

Sources: http://www.mesothelioma.com and http://www.usaep.org
Dangers of Asbestos

Asbestos and lung cancer
Asbestos and mesothelioma

http://www.mesothelioma.com/asbestos-cancer

Biomarkers & Genetic Abnormalities

<table>
<thead>
<tr>
<th>Alterations</th>
<th>Small cell carcinoma (%)</th>
<th>Adenocarcinoma (%)</th>
<th>Squamous cell carcinoma (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF</td>
<td>0</td>
<td><5</td>
<td>0</td>
</tr>
<tr>
<td>EGFR</td>
<td><1</td>
<td>10–30</td>
<td><1</td>
</tr>
<tr>
<td>TERT</td>
<td><1</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>KRAF</td>
<td><1</td>
<td>5–10</td>
<td><1</td>
</tr>
<tr>
<td>PRO1</td>
<td><5</td>
<td><5</td>
<td>5–15</td>
</tr>
<tr>
<td>TP53</td>
<td>>50</td>
<td>5–15</td>
<td>5–15</td>
</tr>
<tr>
<td>Amplifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td><1</td>
<td>5–10</td>
<td>10</td>
</tr>
<tr>
<td>ERBB3/HER2</td>
<td><1</td>
<td><5</td>
<td><1</td>
</tr>
<tr>
<td>MET</td>
<td><1</td>
<td><5</td>
<td>4</td>
</tr>
<tr>
<td>MYC</td>
<td>20–30</td>
<td>5–10</td>
<td>5–10</td>
</tr>
<tr>
<td>FGFR1</td>
<td><1</td>
<td><5</td>
<td>15–23</td>
</tr>
<tr>
<td>Gene rearrangements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALK</td>
<td>0</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>RET</td>
<td>0</td>
<td><1–2</td>
<td>0</td>
</tr>
<tr>
<td>ROS1</td>
<td>0</td>
<td>1–2</td>
<td>0</td>
</tr>
<tr>
<td>MET1</td>
<td>0</td>
<td><1</td>
<td>0</td>
</tr>
<tr>
<td>NTRK2</td>
<td>0</td>
<td><1</td>
<td>0</td>
</tr>
</tbody>
</table>

Emerging Targeted Agents for Patients with Genetic Alterations

- Genetic Alteration (e. Driver event) Available Targeted Agents with Activity Against Driver Event in Lung Cancer
 - BRAF V600E mutation
 - Vemurafenib
 - Dabrafenib
 - MET amplification
 - Crizotinib
 - ROS1 rearrangements
 - Onartatin
 - NTRK1 mutations
 - Midostaurin (category 2B)
 - Affinitant (category 3A)
 - RET rearrangements
 - Cabozantinib (category 2B)

Source: WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, 2015 and NCCN Guidelines NSCLCv7.2015
Biomarkers & Genetic Abnormalities

- **Class of Antineoplastic Agents for NSCLC – Target Gene Therapy**
 - EGFR – Opdive/Nivolumab
 - EGFR – Tarceva/Erlotinib
 - EGFR – Gilotrif/Afatinib
 - EGFR – Iressa/Gefitinib
 - EGFR – Portrazza/Necitumumab
 - EGFR T790M – Tagrisso/Osimertinib
 - ALK – Opdive/Nivolumab
 - ALK – Xalkori/Brizotinib
 - ALK – Zykadia/Ceritinib
 - ALK – Alecensa/Alectinib
 - ALK – Alunbrig/Brigatinib

- **Class of Antineoplastic Agents for NSCLC – Immunotherapy**
 - BRAF V600E – Tafinlar/Dabrafenib
 - BRAF V600E – Mekinist (Trametinib)
 - ROS1 – Xalkori (Crizotinib)

- **Class of Antineoplastic Agents for NSCLC – Angiogenesis Inhibitors & Targets**
 - Bevacizumab (Avastin)
 - VEGF Receptor Ramucirumab (Cyramza)

- **Maintenance Therapy for NSCLC – Chemotherapy**
 - Alimta/Pemetrexed - stable disease, partial/complete response s/p Platinum
Biomarkers & Genetic Abnormalities

- Class of Antineoplastic Agents for NSCLC – Target Gene Therapy – Future
 -HER2/ERBB2 – Trastuzumab – *This is a protein not a mutant gene*
 -MET – Crizotinib
 -MET – Cabozantinib
 -RET – Cabazantinib
 -RET – Vandetanib
 -RET – Alectinib

- Class of Antineoplastic Agents for NSCLC – Future
 -Molecular Testing – Next Generation Sequencing – *Multiple Mutations 1 Test*
 -FISH and IHC Improvements
 -Liquid Biopsy
 -Combination Trials

Standard Chemotherapy

- Cisplatin
- Carboplatin
- Paclitaxel (Taxol)
- Nab-Paclitaxel (Abraxane)
- Docetaxel (Taxotere)
- Gemcitabine (Gemzar)
- Vinorelbine (Navelbine)
- Irinotecan (Camptosar)
- Etoposide (VP-16)
- Vinblastine
- Pemetrexed (Alimta)
What about Small Cell Lung Cancer?

- Standard Chemotherapy
 - Cisplatin and etoposide
 - Carboplatin and etoposide
 - Cisplatin and irinotecan
 - Carboplatin and irinotecan

- Radiation Therapy
 - limited stage
 - post-chemo
 - brain mets
 - palliation

- Surgery – rare for SCLC

What about Carcinoid Tumor of Lung?

- Standard Chemotherapy
 - Streptozocin
 - Etoposide (VP-16)
 - Cisplatin
 - Carboplatin
 - Temozolomide
 - Cyclophosphamide (Cytoxan®)
 - 5-fluorouracil (5-FU)
 - Doxorubicin (Adriamycin®)
 - Dacarbazine (DTIC)

- Somatostatin Analogs – NOT TREATMENT FOR CANCER – treats symptoms of carcinoid syndrome
 - Octreotide/Sandostatin
 - Lanreotide/Somatuline

- Alpha Interferon
- Targeted Drugs – clinical trials – Sunitinib/Sutent & Everolimus/Afinitor
2018 MPH Lung Rules – Pending

2018 Anatomic Staging – SS2018 – Pending
Cancer Staging Basics

1. Where did the cancer start (primary site)?

2. Where did the cancer go (how far did it spread)?

3. How did the cancer get to the other organ or structure?

4. What is the SS2018 and AJCC TNM for this cancer?

 ➢ Incorporate SSDI Required for Staging for all cases.

■ There are three components to AJCC Cancer Stage and to assign Summary Stage 2018:

 ❖ *Where and how big the original mass or primary tumor is* = T
 ❖ *Which nodes the cancer has spread to including how many positive* = N
 ❖ *Whether the cancer has spread to 1 or more distant site(s)* = M

■ The T, N, and M information is joined to assign a Summary Stage and an AJCC “Stage Group” (now called Anatomic Stage/Prognostic Group with addition of genetic and bio-molecular tumor markers and other prognostic factors in the AJCC 8th edition)

■ All cancers must be assigned a Summary Stage – SS2018

 ■ All cancers are assigned clinical stage – verify histology inclusion for TNM Chapter
 ■ Surgically resected cancers are assigned pathological stage – verify histology inclusion list
 ■ Patients completing pre-surgical chemo, radiation, or other therapy are assigned post-treatment stage
Criteria Used to Stage Lung Cancer

- **What To Look For & Document When Reviewing Lung Cancer Cases**
 - Physical Exam – paraneoplastic syndrome, nerve or vessel obstruction
 - CT Chest – tumor location, tumor size, nodes, pleural effusion
 - CT Abdomen – liver or adrenal mets
 - CT/MRI Brain – brain mets
 - Pathology Report(s) – Resection of Primary and Nodal Status
 - Pathology Report(s) – Extension to/thru visceral pleura
 - Pathology Report(s) – Extension to parietal pleura
 - Cytology Report(s) – Pleural Fluid (blood/exudate)
 - Genetic Abnormalities – EGFR, KRAS, BRAF, ALK, ROS1, MET, RET, PDL-1, HER2

2018 Anatomic Staging – AJCC TNM 8th ed
Clinical Classification - cTNM

- Based on Evidence Acquired Before Any Treatment
 - Physical Exam
 - Imaging (CT Scan, PET Scan)
 - Laboratory Tests
 - Thoracentesis
 - Endoscopy with ultrasound or biopsy (core/FNA)
 - Bronchoscopy (EBUS)
 - Esophagoscopy (EUS)
 - Mediastinoscopy
 - Thoracoscopy (VATS without resection of primary tumor)
 - Exploratory Thoracotomy

Pathologic Classification - pTNM

- Includes Any Evidence Acquired Before Any Treatment PLUS
- Pathologic Assessment of Resected Primary Tumor (to highest pT) *
- Pathologic Assessment of Regional Lymph Nodes (to highest pN) *
- Isolated Tumor Cells (ITCs) in Lymph Node(s) are Classified N0 or M0
 - pN0
 - pN0(i-)
 - pN0(i+)
 - pN0(mol-)
 - pN0(mol+)
- pM can be either cM or pM when the T and/or N categories are valid

* "Pathologic staging depends on the proven anatomic extent of disease, whether or not the primary lesion has been completely removed. If a biopsied primary tumor technically cannot be removed...and if the highest T and N categories or the M1 category of the tumor can be confirmed microscopically, the criteria for pathologic classification and staging have been satisfied without total removal of the primary cancer."
Post-Neoadjuvant p Classification - ypTNM

- Best Demonstrates Need for Accurate Clinical Stage when the first cancer surgery follows radiation therapy, chemotherapy, hormones, immunologic agents meant to alter the tumor behavior, size, extension, lymph node status, etc., resulting in down-stage of disease at time of first surgery and with some current regimens showing no primary tumor and negative nodes at surgery.

- Patient must have received planned presurgical therapy(s):
 - Radiation Therapy (any modality)
 - Chemotherapy
 - Hormone(s)
 - Biologic Agent (BRM/Immuno)
 - Combination of above

- Patient must have post-therapy excision of primary site and nodes sufficient to meet the criteria to assign AJCC Stage Pathologic Classification or pTNM.
Clarify the Difference between Atelectasis, Obstructive Pneumonitis, Consolidation, and (Malignant/Non-Malignant) Pleural Effusion

- **Atelectasis/Pneumothorax** = Complete or Partially Collapsed Lung
- **Pneumonitis** - inflammation of the walls of the alveoli in the lungs, often caused by a virus.
- **Obstructive Pneumonitis** – pneumonitis resulting in bronchial obstruction
- **Consolidation** - a region of lung tissue that has filled with liquid or blood or pus instead of air
- **Pleural Effusion/Hemothorax** - a buildup of extra fluid in the space between the lungs and the chest wall.

Most pleural effusions are hemorrhagic or bloody which indicates malignant pleural effusion without even looking at cytology.

Any pleural effusion in lung cancer is deemed “malignant” and must be proven “negative” x 2-3 cytology examinations.

When pleural effusion described as “minimal” or “small” it may not be ‘treated’ as with involvement – still code as malignant pleural effusion for consistency in staging cases.

- **Primary Tumor Extension to either Pleura** is not the same as pleural effusion
N Category

Isolated Tumor Cells (ITCs) in Lymph Node(s) are Classified N0 or M0
- pN0
- pN0(i-)
- pN0(i+)
- pN0(mol-)
- pN0(mol+)

Lung Anatomy

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastases
- **N1** Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension
- **N2** Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
- **N3** Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s)
IASLC Staging Survival Tree

M Category

<table>
<thead>
<tr>
<th>M: Distant metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M1a</td>
</tr>
<tr>
<td>M1b</td>
</tr>
<tr>
<td>M1c</td>
</tr>
</tbody>
</table>
Anatomic Stage/Prognostic Groups

- Stage IA is now divided into IA1, IA2, and IA3 for T1a, T1b, and T1cN0M0 tumors
- ALL N1 disease is stage IIB except for T3-T4N1M0 tumors, which are stage IIIA
- New Stage IIIC is created for T3-T4N3M0 tumors
- Stage IV is divided into IVA (M1a and M1b) and IVB (M1c)

Anatomic Stage/Prognostic Groups

<table>
<thead>
<tr>
<th>STAGE</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute carcinoma</td>
<td>TX</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>B</td>
<td>T1a, T1b, T1c, T2a, T3a, T4</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>A2</td>
<td>T1b</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>A3</td>
<td>T1c</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>B</td>
<td>T2a</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>IA</td>
<td>T2b</td>
<td>NO</td>
<td>MO</td>
</tr>
<tr>
<td>IB</td>
<td>T4a, b, c, N1</td>
<td>N1</td>
<td>MO</td>
</tr>
<tr>
<td>T2ab</td>
<td>N1</td>
<td>MO</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>NO</td>
<td>MO</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>T4ab, c</td>
<td>N2</td>
<td>MO</td>
</tr>
<tr>
<td>T2a b, T3</td>
<td>N2</td>
<td>MO</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>NO</td>
<td>MO</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>N1</td>
<td>MO</td>
<td></td>
</tr>
</tbody>
</table>

Additional Table:

<table>
<thead>
<tr>
<th>NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
</tr>
<tr>
<td>N4</td>
</tr>
<tr>
<td>Any T</td>
</tr>
<tr>
<td>Any T</td>
</tr>
<tr>
<td>Any T</td>
</tr>
</tbody>
</table>
Small Cell Lung Cancer VALG Stage

- **Veterans Administration Lung Study Group’s (VALG) Staging Classification for Small Cell Lung Cancer**

- **Limited-Stage:** AJCC (8th edition) Stage I-III (excludes most T3-T4 due to multiplicity of tumors in same lung – cannot radiate for local control)

- **Extensive-Stage:** AJCC (8th edition) Stage IV and most T3-T4

Still use AJCC TNM when can be more specific. But, most clinicians will refer to the VALG “limited” or “extensive” when assessing for treatment options, particularly for inclusion/exclusion of XRT to chest when T3-T4.

2018 Lung Site-Specific Data Items

- **REQUIRED for Staging – NONE**

- **RECOMMENDED for Clinical Care – Not Yet Approved or Fully Defined**
 - Resection Margins
 - Adequacy of Mediastinal Dissection
 - EGFR Mutation
 - ALK Gene Rearrangement
 - Symptoms
 - Weight Loss
 - Performance Status
 - Prophylactic Cranial Radiotherapy
 - LVI and Perineural Invasion
 - Type of Visceral Pleural Invasion – PL1 versus PL2
 - SUV of Primary Tumor
Text Documentation

- Dates
- CT Scans
- Screening
- Tumor Size – clinical and pathological
- Nodal Status – clinical and pathological
- All Metastatic Sites
- Results of Genetic Profile – what is positive and what marker studies were performed
- Specific Agents for Chemotherapy
- Specific Agents for Targeted Therapies
- Radiation Fields and Dosage

- ALL Surgical Procedures to Primary Site
- ALL Surgical Procedures to Lymph Nodes
- Caution: Do not code Surgery to Other Regional or Distant Sites unless cancer-related.
- When assigning post-treatment stage be very cautious that patient meets criteria for yp.
- *This year we do not collect yc – perhaps next yr*

PRACTICE CASES
Practice Cases

- We will not include Histology Coding Practice Cases until we can confirm with MPH.

- We will not include Staging Practice Cases until we can confirm with AJCC & SS2018.

- We hope that by mid-2018 we can provide a selection of practice cases from multiple sites and histologies for registrars to code number of primaries (MPH), histology (MPH) and to stage cases using Summary Stage 2018 and AJCC Cancer Staging, 8th ed.

- The July FCDS Annual Conference will focus heavily on new standards and practice.

References and Resources

- WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, 4th edition; World Health Organization, IARC, Lyon 2015

- The 2015 World Health Organization Classification of Lung Tumors; Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification; Journal of Thoracic Oncology • Volume 10, Number 9, September 2015

- Biomarker Testing of Specimens from Patients with NSCLC, CAP, June 2016

- AJCC Cancer Staging Manual, 8th edition; American Joint Committee on Cancer, 2017

- E-Cigarette Use Among Youth and Young Adults; A Report of the Surgeon General; DHHS, 2016

- NCCN Guidelines – Lung Cancer Screening, Non-Small Cell Lung Cancer, Small Cell Lung Cancer
Questions