LUNG CANCER

FCDS 2013 Educational Webcast Series
September 19, 2013

Mayra Espino, BA, RHIT, CTR
Steven Peace, BS, CTR
FCDS QC Staff
Presentation Outline

- Overview of Lung Cancer
- Signs, Symptoms and Risk Factors
- Anatomy of the Lungs
- Histologic Types of Lung Cancer
- New Lung Cancer Screening Recommendations
- Multiple Primary and Histology Coding Rules Refresher
- Collaborative Stage Data Collection System (CSv02.04)
- C.S. Site Specific Factors
- NCCN/ASCO Treatment Guidelines by Stage
- Text Documentation
Overview
Definition of Lung Cancer

Lung cancer or bronchogenic cancer is defined as a malignant tumor of the lung arising within the wall or epithelium of the bronchus.
Incidence and Mortality Lung Cancer

<table>
<thead>
<tr>
<th>Leading New Cancer Cases and Deaths – 2013 Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated New Cases</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Prostate</td>
</tr>
<tr>
<td>Lung & bronchus</td>
</tr>
<tr>
<td>Colon & rectum</td>
</tr>
<tr>
<td>Urinary bladder</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
</tr>
<tr>
<td>Leukemia</td>
</tr>
<tr>
<td>Pancreas</td>
</tr>
<tr>
<td>All sites</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Breast</td>
</tr>
<tr>
<td>Lung & bronchus</td>
</tr>
<tr>
<td>Colon & rectum</td>
</tr>
<tr>
<td>Uterine corpus</td>
</tr>
<tr>
<td>Thyroid</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
</tr>
<tr>
<td>Pancreas</td>
</tr>
<tr>
<td>All sites</td>
</tr>
<tr>
<td>Estimated Deaths</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Lung & bronchus</td>
</tr>
<tr>
<td>Prostate</td>
</tr>
<tr>
<td>Colon & rectum</td>
</tr>
<tr>
<td>Pancreas</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
</tr>
<tr>
<td>All sites</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Lung & bronchus</td>
</tr>
<tr>
<td>Breast</td>
</tr>
<tr>
<td>Colon & rectum</td>
</tr>
<tr>
<td>Pancreas</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
</tr>
<tr>
<td>All sites</td>
</tr>
</tbody>
</table>

*Excludes basal and squamous cell skin cancers and in situ carcinoma except urinary bladder.

©2013, American Cancer Society, Inc., Surveillance Research
Incidence and Mortality Lung Cancer

Estimated Number* of New Cancer Cases and Deaths by Sex

US & FL - 2013

- **228,190** new lung cancers
- **118,080** new *Male* lung cancer
- **110,110** new *Female* lung cancer
- **159,480** lung cancers *deaths*
- **87,260** *Male* lung cancer *deaths*
- **72,220** *Female* lung cancer *deaths*

- **17,960** FL new cases lung cancer
- **12,070** FL lung cancers *deaths*

ACS Cancer Facts & Figures 2013
Cancer Death Rates* Among Men, US, 1930-2009

*Age-adjusted to the 2000 US standard population.
Cancer Death Rates* Among Women, US, 1930-2009

*Age-adjusted to the 2000 US standard population.
Lung Cancer Kills More People Than…

![Graph showing cancer deaths by site in 2012.](image)

Trends in Tobacco Use and Lung Cancer Death Rates* in the US

*Age-adjusted to 2000 US standard population.

Lung Cancer Survival by Stage

Five-year Relative Survival Rates* (%) by Stage at Diagnosis, 2002-2008

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>All Stages</th>
<th>Local</th>
<th>Regional</th>
<th>Distant</th>
<th>All Stages</th>
<th>Local</th>
<th>Regional</th>
<th>Distant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast (female)</td>
<td>89</td>
<td>98</td>
<td>84</td>
<td>24</td>
<td>44</td>
<td>92</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>64</td>
<td>90</td>
<td>70</td>
<td>12</td>
<td>6</td>
<td>23</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Esophagus</td>
<td>17</td>
<td>38</td>
<td>20</td>
<td>3</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Kidney*</td>
<td>71</td>
<td>91</td>
<td>64</td>
<td>12</td>
<td>95</td>
<td>99</td>
<td>96</td>
<td>73</td>
</tr>
<tr>
<td>Larynx</td>
<td>61</td>
<td>76</td>
<td>42</td>
<td>35</td>
<td>98</td>
<td>100</td>
<td>97</td>
<td>54</td>
</tr>
<tr>
<td>Liver*</td>
<td>15</td>
<td>28</td>
<td>10</td>
<td>3</td>
<td>78</td>
<td>70</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>16</td>
<td>52</td>
<td>25</td>
<td>4</td>
<td>68</td>
<td>91</td>
<td>57</td>
<td>16</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>91</td>
<td>98</td>
<td>62</td>
<td>15</td>
<td>82</td>
<td>95</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>62</td>
<td>82</td>
<td>57</td>
<td>35</td>
<td>82</td>
<td>95</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td>Ovary</td>
<td>44</td>
<td>92</td>
<td>72</td>
<td>27</td>
<td>6</td>
<td>23</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Prostate</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>28</td>
<td>27</td>
<td>62</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Stomach</td>
<td>27</td>
<td>62</td>
<td>28</td>
<td>4</td>
<td>95</td>
<td>99</td>
<td>96</td>
<td>73</td>
</tr>
<tr>
<td>Testis</td>
<td>95</td>
<td>99</td>
<td>96</td>
<td>73</td>
<td>98</td>
<td>100</td>
<td>97</td>
<td>54</td>
</tr>
<tr>
<td>Thyroid</td>
<td>98</td>
<td>100</td>
<td>97</td>
<td>54</td>
<td>78</td>
<td>70</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Urinary bladder*</td>
<td>78</td>
<td>70</td>
<td>33</td>
<td>6</td>
<td>68</td>
<td>91</td>
<td>57</td>
<td>16</td>
</tr>
<tr>
<td>Uterine cervix</td>
<td>68</td>
<td>91</td>
<td>57</td>
<td>16</td>
<td>82</td>
<td>95</td>
<td>67</td>
<td>16</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>82</td>
<td>95</td>
<td>67</td>
<td>16</td>
<td>82</td>
<td>95</td>
<td>67</td>
<td>16</td>
</tr>
</tbody>
</table>

* Rates are adjusted for normal life expectancy and are based on cases diagnosed in the SEER 18 areas from 2002-2008, followed through 2009.
† Includes renal pelvis. § Includes intrahepatic bile duct. $ Rate for in situ cases is 96%.

Local: an invasive malignant cancer confined entirely to the organ of origin. Regional: a malignant cancer that 1) has extended beyond the limits of the organ of origin directly into surrounding organs or tissues; 2) involves regional lymph nodes by way of lymphatic system; or 3) has both regional extension and involvement of regional lymph nodes. Distant: a malignant cancer that has spread to parts of the body remote from the primary tumor either by direct extension or by discontinuous metastasis to distant organs, tissues, or via the lymphatic system to distant lymph nodes.

American Cancer Society, Surveillance Research 2013
Lung Cancer Survival by Stage

* The 5-year survival for small cell lung cancer (6%) is lower than that for non-small cell (18%).

* 5-year survival rate for all stages combined is only 16%.

* Only 15% of lung cancers are diagnosed at a localized stage, for which the 5-year survival rate is 52%.

* 1-year relative survival for lung cancer increased from 37% in 1975-1979 to 44% in 2005-2008, largely due to improvements in surgical techniques and combined therapies.

Cancer Facts & Figures 2013
Geographic Patterns in Lung Cancer Death Rates* by State, US, 2005-2009: Males

Source: US Mortality Data, National Center for Health Statistics, Centers for Disease Control and Prevention. American Cancer Society, Surveillance Research, 2013
Geographic Patterns in Lung Cancer Death Rates* by State, US, 2005-2009: Females

Appalachia and Major U.S. Rivers

Poverty Rates in Appalachia, 2005-2009
http://arc.gov

Mississippi River, Ohio River, Missouri River
http://voanews.com
U.S. Adult Smoking Rates

Adult Smoking Rates
http://www.cdc.gov
Signs and Symptoms

Symptoms may include persistent cough, sputum streaked with blood, shortness of breath, wheezing, chest pain, voice change, and recurrent pneumonia or bronchitis, hoarseness, pain when swallowing, high pitched sound when breathing.
Signs and Symptoms

* Persistent cough
* Unexplained dyspnea (SOB)
* Sputum with blood (Hemoptysis)
* Excessive sputum production
* Weight loss & fatigue & anorexia
* Hoarseness or change in voice
* Shoulder or other joint pain
* Chest, back or arm pain
* Recurring episodes of pleural effusion, pneumonia or bronchitis
Signs and Symptoms

Pancoast tumors: pain in the shoulder and down the ulnar distribution of the forearm; Horner’s syndrome may also be present

Tumors of the main bronchus (majority of tumors here): localized expiratory/inspiratory wheeze or "honk"

Tumors of visceral pleura: pleural effusion, dullness, absence or decreased breath sounds and tactile fremitus

Tumors of the lobar bronchus: decreased or absent breath sounds and fremitus; deviation of trachea with pronounced transmission of tracheal sounds

http://www.yalemedicalgroup.org/stw/images/36570.jpg
Risk Factors

* Cigarette smoking
* Other tobacco smoking
* Passive smoking - 2nd hand smoke
* Occupational carcinogens
 * Asbestos exposure
* Residential carcinogens
 * Radon exposure
* Having had certain other cancers
* Family member with lung cancer
* Having had other lung disease

* TB, bronchitis & emphysema
* Nutritional deficiencies
* Air pollution
* Viruses
Tobacco Use

* Smoking main contributor
* Cigarette smoke contains over 69 known carcinogens
 * Radioisotopes
 * Nitrosamine
 * Benzene
 * Acetone
 * Cadmium

http://media-cache-ak0.pinimg.com/736x/01/cd/77/01cd77817267eba08e038775b735391d.jpg

http://wordpress.com/cigarette
Smoke without fire
Suck on an e-cigarette and it produces a cloud of nicotine-carrying vapour with none of the toxic by-products of burning tobacco.

- LED lights up when the smoker draws on the cigarette
- Sensor detects when smoker takes a drag
- Heater vaporises nicotine
- MICROPROCESSOR controls heater and light
- CARTRIDGE holds nicotine dissolved in propylene glycol

http://www.awesomевapor.com
Radon Gas

http://premierradon.net
Radon Gas

http://pillartopost.com/epa
Asbestos

• Asbestos and lung cancer
• Asbestos and mesothelioma

http://www.mesothelioma.com/asbestos-cancer
Air and Water Pollution

- High levels of air pollution
- Drinking water containing high levels of arsenic
Viruses

- Implicated viruses include Human Papilloma Virus (HPV), Simian Virus (SV40), cytomegalovirus (CMV).

- These viruses may effect the cell cycle allowing uncontrolled cell division.

http://abcnews.go.com/Health/story?id=4728594
Lung Anatomy

http://www.omnimedicalsearch.com/conditions-diseases/images/lung-cancer.jpg
Lung Anatomy

http://www.damav.com/mare/lung/

http://legacy.owensboro.kctcs.edu
* C34.0 Main bronchus
* C34.1 Upper lobe, lung
* C34.2 Middle lobe, lung (right lung only)
* C34.3 Lower lobe, lung
* C34.8 Overlapping lesion
* C34.9 Lung, NOS

* Source: SEER Training: ICD-O-3 Site Codes
Lung Anatomy

The **hilum** is the space in each lung where the bronchus and blood vessels enter the lung.

The **apex** is the rounded area at the top of each lung.
The **lingula**, found only in the left lung, is a projection of the upper lobe of the left lung thought to be a remnant of an ancient middle lobe of the left lung.
Lung Anatomy
Great Vessels

Source: Springer Images. Figure adapted from Atlas of Human Anatomy, 2nd ed. Contents of the superior and middle mediastinum. http://www.springerimages.com/Images/MedicineAndPublicHealth/1-10.1007_978-1-60327-372-5_4-9
Lung Anatomy
Laterality

- Code laterality for all lung sub-sites except carina
- Code the laterality for the lung in which the tumor originated
- Count cancer in both lungs as separate primaries unless metastasis from one side to the other is documented
- Always check that multiple pulmonary nodules are not metastasis from another primary site

- If both lungs have nodules or tumors and the lung of origin is not known, assign code 4.
- Diffuse bilateral lung nodules is the only time when laterality = 4
- Always check that multiple pulmonary nodules are not metastasis from another primary site
Lung Anatomy
Regional Lymph Nodes

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastases
- **N1** Metastasis in *ipsilateral peribronchial* and/or *ipsilateral hilar* lymph nodes and *intrapulmonary* nodes, including involvement by direct extension
- **N2** Metastasis in *ipsilateral mediastinal* and/or *subcarinal* lymph node(s)
- **N3** Metastasis in *contralateral mediastinal*, *contralateral hilar*, *ipsilateral* or *contralateral scalene*, or *supraclavicular* lymph node(s)
Lung Anatomy
Regional Lymph Nodes

N1 is defined as metastasis in ipsilateral peribronchial (left side of diagram) and/or ipsilateral hilar lymph nodes (right side of diagram) and intrapulmonary nodes, including involvement by direct extension of the primary tumor.
Lung Anatomy
Regional Lymph Nodes

N2 is defined as metastasis in ipsilateral mediastinal (left side of diagram) and/or subcarinal lymph node(s) (right side of diagram).
N3 is defined as metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s), whereas M1b is defined as distant metastasis (in extrathoracic organs), and this would include distant lymph nodes.
M1a is defined as separate tumor nodule(s) in a contralateral lobe; tumor with pleural nodules or malignant pleural (or pericardial) effusion. This is an image of tumor with malignant pleural effusion.
A tumor that falls short of completely traversing the elastic layer of the visceral pleura is defined as PL0. A tumor that extends through the elastic layer is defined as PL1 and one that extends to the surface of the visceral pleural as PL2. Extension of the tumor to the parietal pleura is defined as PL3.
Lung Anatomy

Metastatic Sites

Stage 4 - Tumor has spread to another part of the body

- Brain
 - Headaches
 - Seizures
 - Vertigo

- Respiratory
 - Cough
 - Hemoptysis
 - Dyspnea

- Lymph nodes
 - Lymphadenopathy

- Liver
 - Hepatomegaly
 - Jaundice

- Skeletal
 - Pain
 - Fractures
 - Spinal cord compression

http://lungcancer.ibibiosolutions.com/staging.html

www.landesbioscience.com
Types of Lung Cancer

http://sciencedirect.com
Lung Cancer Type

* World Health Organization (WHO) divides lung cancer into two major classes based on histology, therapy and prognosis.

* The main classes of lung cancer are:

 - **Small Cell Lung Cancer (SCLC)**
 - **Non-Small Cell Lung Cancer (NSCLC)**
 - Large Cell Carcinoma
 - Large Cell Neuroendocrine Carcinoma
 - Squamous Cell Carcinoma
 - Adenocarcinoma
 - Bronchoalveolar Carcinoma
Lung Cancer Type

- Malignant neoplasm, NOS and Malignant tumor cells (8000 and 8001)
 - Carcinoma, NOS, Carcinoma, undifferentiated, NOS and Carcinoma, anaplastic, NOS (8010, 8020 and 8021)
 - Neuroendocrine CA, NOS (8246)
 - Carcinoid, NOS (8240)
 - Small Cell CA, NOS (8041)
 - Non-Small Cell CA (8046)
 - Sarcomatoid CA (8033)
 - Pleomorphic CA (8022)
 - Large Cell CA, NOS (8012)
 - AdenoCA, NOS (8140)
 - Squamous Cell CA, NOS (8070)
Lung Cancer Type

Lung Cancer Type

Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA (2008), Tobacco Control 17 (3): 198-204
Small Cell Lung Carcinoma (SCLC)

* A type of lung cancer made up of small, round cells.
* Small cell lung cancer is less common than non-small cell lung cancer
* Often grows more quickly

* The name is often shortened to SCLC. Another name for SCLC is oat cell cancer because the cancer cells may look like oats (Flat shape) when viewed under a microscope, grows rapidly and quickly spreads to other organs

Source: webmd.com
Non-Small Cell Lung Carcinoma (NSCLC)

Non-small cell lung cancer is divided into 3 subcategories

- Large cell carcinomas make up a group of cancers that look large and abnormal under a microscope.
- Squamous cell carcinoma originates in the thin, flat cells that line the passages of the respiratory tract.
- Adenocarcinoma begins in the cells that form the lining of the lungs.

* Non-Small Cell Lung Cancer is the most common type of Lung Cancer
* Is usually grows and spreads more slowly than small cell lung cancer
Non-Small Cell Lung Carcinoma (NSCLC)

* Squamous or epidermoid (807_3)--least likely to recur after resection; frequently a central or bronchial lesion.
* Adenocarcinoma (814_3)--usually slow-growing, but can metastasize widely; usually a peripheral lesion.
* Bronchioloalveolar (82503)--a very specific subtype adenocarcinoma with a distinct characteristic presentation and behavior. These tumors arise in the alveolar sacs in the lungs.
* Large cell carcinoma (80123)--also called giant cell or clear cell.
* Other subtypes of adenocarcinoma are acinar, papillary, and mucinous.
* Adenosquamous carcinoma (85603)--a specific histologic variant containing both epithelial (squamous and glandular (adeno-) cells

* Carcinoids (824_3)--arise from neuroectoderm (which generates supporting structures of lung).
* Melanomas, sarcomas and lymphomas may also arise in the lung.
* Mesothelioma (905_3)--linked to asbestos exposure; usually involves the pleura, not the lung.
* Non-small cell carcinoma (80463)--a general term used sloppily to separate small cell from the "non-small cell" types (such as adenocarcinoma, Squamous cell carcinoma, large cell, etc.).
* Only use 8046/3 when there is no other type of non-small cell carcinoma contained in the source documents.

Source: FCDS Monthly Memo Nov 2003
Large Cell Carcinoma

- Incidence: 15%
- More often peripheral mass; either single or multiple masses; may be central
- Named for the large, round cells seen in this cancer
- Grow quickly and spread so usually are diagnosed in later stage

- Often grows to large tumor
- Growth rate: rapid growth

Squamous Cell Carcinoma

- Arises from bronchial epithelium (i.e. major bronchi), confined to bronchial wall with no lymph node metastases
- As growth occurs, cavitation may develop in lung distal to tumor.
- Tumor may occur in apex & upper respiratory zone
- Growth rate: slow growth

- Five year survival is 90% or more if no 2nd SCC present

Sources: Adam and Medline Plus
Adenocarcinoma
Adenocarcinoma

- Majority Arises from terminal bronchioles
- Tend to be located in the periphery of the lung
- Cancer that begins in the cells that line the alveoli and make substances such as mucous.
- 80% contain mucin
- A slow growing cancer that can take years to develop into invasive cancer
- Most common subtype in nonsmokers
- In US, 50% of lung carcinomas in women are adenocarcinoma

- Incidence: >40%

Clinical features
- May be associated with scarring
- Grows slower than SCC
- 5 year survival:
 - Stage I - 69%
 - Stage II - 40%
 - Stage IIIA - 17%
 - Stage IIIB - 5%
 - Stage IV - 8%
Adenocarcinoma

Gross description

- Poorly circumscribed gray-yellow lesions, single or multiple, may be mucoid
- 77% involve visceral pleura producing puckering/pleural retraction, 65% are peripheral
- Usually not cavitary
- Often associated with a peripheral scar or honeycombing (scar appears to be response to tumor)
- Rarely spreads into pleural space to coat visceral and parietal pleura and resemble diffuse mesothelioma

This is a peripheral adenocarcinoma of the lung

http://www.pathologyoutlines.com
Bronchoalveolar Adenocarcinoma

Travis Classification

- Adenocarcinoma in situ (AIS) (formerly Bronchioalveolar Carcinoma - BAC) which is a pre-invasive lesion

- Minimally invasive adenocarcinoma (MIA) <3cm nodule with <5mm invasion

- These neoplasms have a better prognosis than other lung cancers.

- Composed of columnar cells that proliferate along the framework of alveolar septae, a so-called "lepidic" growth pattern. The cells are well-differentiated

This is another type of adenocarcinoma of lung known as adenocarcinoma-in-situ (formerly called bronchoalveolar adenocarcinoma)

http://www.pathologyoutlines.com
• Under the microscope, an image such as that on the left shows thickened walls of the gas-exchanging sacs in the lungs called alveoli.
• The classic description of this pattern is lepidic, meaning “scale-like.”
• X-rays and other imaging shows a picture that looks remarkably like pneumonia, as shown on the right.
• Patients with BAC are routinely diagnosed as having pneumonia for weeks or months before a diagnosis of cancer is actually established.

http://cancergrace.org/lung

Bronchoalveolar Adenocarcinoma
Lung Cancer Histology Groups

http://stageiv.files.wordpress.com
Lung Cancer Screening

Low Dose Helical CT (LDCT or also known as spiral CT)

Lung Cancer Screening

* August 2011 - National Lung Screening Trial (NLST) Results
* Screening with low-dose spiral CT compared to CXR reduced lung cancer deaths among older heavy smokers by 20%.
* Improved detection of lung cancer at early stage is key to increased survival and improved mortality.
* Weigh Benefits/Risk of lung cancer screening using CT scan
* Recommend Screening in High Risk Population:
 * Current/Former Smoker
 * Age 55-74 Years
 * Smoking History of at least 20-30 pack-years (varies by organization)
 * No personal history of lung cancer
* Frequency of Screening - Annual
Lung Cancer Screening

* Endorsement/Adoption of Guideline
 * American Cancer Society (ACS)
 * American Lung Association (ALA)
 * American College of Chest Physicians (ACCP)
 * American Association for Thoracic Surgery (AATS)
 * ASCO/NCCN Clinical Practice Guidelines (ASCO/NCCN)
 * United States Preventative Services Task Force
Lung Cancer Screening

* ALA Developing an **Educational Portfolio for Patients** to Explain:
 * The difference between a screening process and a diagnostic test
 * *Cancer Screening is testing for cancer before there are any symptoms*
 * The benefits, risks and costs (emotional, physical and economic)
 * That not all lung cancers will be detected through use of low dose CT scanning

* ALA issued a **Call to Action for Hospitals and Screening Centers** to:
 * Establish ethical policies for advertising/promoting lung cancer screening services
 * Develop educational materials to assist patients in having thoughtful discussions between patients and physicians regarding lung cancer screening
 * Provide lung cancer screening services with access to multidisciplinary teams that can deliver the needed follow-up for evaluation of nodules.
Lung Workup

NCCN Guidelines Version 1.2014
Lung Cancer Screening

RISK ASSESSMENTa,b

- Smoking historyc
 - Present or past
- Radon exposured
- Occupational exposuree
- Cancer historyf
- Family history of lung cancer
- Disease history (COPD or pulmonary fibrosis)
- Smoking exposureg (second-hand smoke)
- Absence of symptoms or signs of lung cancer (if symptoms, see appropriate NCCN Guidelines)

RISK STATUS

High risk:
- Age 55-74 y and
- \geq 30 pack year history of smoking and
- Smoking cessation \textless 15 y (category 1)
 or
- Age \geq 50 y and
- \geq 20 pack year history of smoking and
- One additional risk factor (other than second-hand smoke) (category 2B)

Moderate risk:
- Age \geq 50 y and
- \geq 20 pack year history of smoking or second-hand smoke exposureg
- No additional risk factors

Low risk:
- Age <50 y and/or
- <20 pack year history of smoking

See Screening and Findings (LCS-2)

Routine lung cancer screening not recommended

Routine lung cancer screening not recommended

aIt is recommended that institutions performing lung cancer screening use a multidisciplinary approach that includes the specialties of thoracic radiology, pulmonary medicine, and thoracic surgery.

bLung cancer screening is appropriate to consider for those high-risk patients who are potential candidates for definitive treatment. Chest x-ray is not recommended for lung cancer screening.

cAll current smokers should be advised to quit smoking, and former smokers should be advised to remain abstinent from smoking (http://www.surgeongeneral.gov/initiatives/tobacco/index.html). For additional cessation support and resources, smokers can be referred to http://www.smokefree.gov.

dDocumented high radon exposure.

eAgents that are identified specifically as carcinogens targeting the lungs: silica, cadmium, asbestos, arsenic, beryllium, chromium, diesel fumes, nickel, coal smoke, and soot.

fThere is increased risk of developing new primary lung cancer among survivors of lung cancer, lymphomas, cancers of the head and neck, or smoking-related cancers.

gIndividuals exposed to second-hand smoke have a highly variable exposure to the carcinogens, with varying evidence for increased risk after this variable exposure. Therefore, second-hand smoke is not independently considered a risk factor for lung cancer screening.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 1.2014
Lung Cancer Screening

SCREENING MODALITY
Baseline low-dose CT (LDCT)^h

SCREENING FINDINGS
Lung nodule(s) on LDCT
- Solid or part solid nodule^1
- Ground glass opacity (GGO)^2
- Ground glass nodule (GGN)^2
- Nonsolid nodule (NS)^1
- Multiple GGO/GGNs^1

No lung nodule(s) on LDCT
- Annual LDCT for 2 years (category 1) and consider annual LDCT until patient no longer eligible for definitive treatment^h,j,k

Findings requiring follow-up for diseases other than lung cancer (eg, suspicious for other cancers, COPD, coronary artery calcifications)

^1 All screening and follow-up CT scans should be performed at low dose (100-120 kVp & 40-60 mAs or less), unless evaluating mediastinal abnormalities or lymph nodes, where standard-dose CT with IV contrast might be appropriate (See Table 2). There should be a systematic process for appropriate follow-up.
^2 Without benign pattern of calcification, fat in nodule as in hamartoma, or features suggesting inflammatory etiology. When multiple nodules are present and occult infection or inflammation is a possibility, an added option is a course of a broad-spectrum antibiotic with anaerobic coverage, followed by LDCT 1-2 months later.
^h If new nodule at annual or follow-up LDCT, see LCS-6. New nodule is defined as ≥3 mm in mean diameter.
^j,k There is uncertainty about the appropriate duration of screening and the age at which screening is no longer appropriate.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Lung Workup

EVALUATION OF SCREENING FINDINGS

- <6 mm
 - Annual LDCT for 2 years (category 1) and consider annual LDCT until patient no longer eligible for definitive treatment

- 6-8 mm
 - LDCT in 3 mo
 - If no increase in size, LDCT in 6 mo
 - Low suspicion of lung cancer
 - LDCT in 3 mo

- >8 mm
 - Consider PET/CT
 - Solid or part solid nodule
 - LDCT in 1 mo (immediately after vigorous coughing)
 - If no resolution

- Solid endobronchial nodule
 - LDCT in 1 mo

FOLLOW-UP OF SCREENING FINDINGS

- Annual LDCT for 2 years (category 1) and consider annual LDCT until patient no longer eligible for definitive treatment

- If no increase in size, LDCT in 6 mo

- Low suspicion of lung cancer

- Biopsy or surgical excision

- Suspected lung cancer

- No cancer

- Cancer confirmed

- NCCN Guidelines

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 1.2014, 09/13/13 © National Comprehensive Cancer Network, Inc. 2013. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
Lung Cancer Workup
Chest X-ray vs. CT

This x-ray shows a single lesion (pulmonary nodule) in the upper right lung (seen as a light area on the left side of the picture). The nodule has distinct borders (well-defined) and is uniform in density. Tuberculosis (TB) and other diseases can cause this type of lesion.

This CT scan shows a single lesion (pulmonary nodule) in the right lung. This nodule is seen as the light circle in the upper portion of the dark area on the left side of the picture. A normal lung would look completely black in a CT scan.
Bronchoscopy

If a mediastinal mass or mediastinal adenopathy is reported on x-ray or mediastinoscopy, assume that mediastinal lymph nodes are involved.

http://www.urmc.rochester.edu/encyclopedia
Lung Cancer Workup

Endoscopic ultrasound (EUS)
CT-Guided Needle Aspiration Biopsy

Illustration www.health.uab.edu
http://www.urmc.rochester.edu/encyclopedia
Lung Cancer Workup

Thoracentesis Thoracotomy

- Patient sitting upright and leaning on table
- Fluid pushes on left lung
- Fluid collects in bag or syringe
- Pleural space filled with excess fluid

- Enlarged aortico-pulmonary lymph node
- Left lung mass
- The pleural cavity is entered through a limited incision in the 5th intercostal space, through which the lung mass and enlarged lymph node are removed.
Lung Cancer Workup
Biomarkers

* Data show that targeted therapy is potentially very effective in patients with specific gene mutations or rearrangements.

* Several biomarkers have emerged as prognostic (patient survival) and predictive (therapeutic efficacy) for NSCLC.
Lung Cancer Workup

Biomarkers

* **EGFR**
 * Epidermal Growth Factor Receptor

* **ERCC1**
 * Endonuclease of the nucleotide excision repair complex

* **K-ras** oncogene

* **RRM1**
 * Regulatory subunit of ribonucleotide reductase

* **EML4-ALK** Fusion Oncogene
Lung Cancer Workup
Immunohistochemical Stains (IHC)

- TTF-1 is very important in distinguishing primary from metastatic adenocarcinoma.
- Most primary lung adenocarcinomas are TTF-1 positive.
- Squamous cell lung carcinomas are often TTF-1 negative
- Other squamous cell IHC tests - p63 positive and cytokeratin positive
- Other adenocarcinoma IHC tests - CEA, B72.3, BER-EP4, and MOC3.
 - These stains are negative for mesothelioma.
- Thyroglobulin is present in tumors from patients with thyroid cancer, but it is negative in lung cancer tumors.
- Pulmonary adenocarcinoma is usually CK7+ and CK20-, whereas metastatic adenocarcinoma of the colorectum is usually CK7- and CK20+.

NCCN Guidelines
Nearly all SCLCs are immunoreactive for keratin, epithelial membrane antigen, and thyroid transcription factor-1 (TTF-1).

Most SCLCs also stain positive for markers of neuroendocrine differentiation, including chromogranin A, neuron-specific enolase, neural cell adhesion molecule (NCAM; CD56) and synaptophysin.

However, these markers alone cannot distinguish SCLC from NSCLC because approximately 10% of NSCLC will be immunoreactive for at least one of these neuroendocrine markers.
Lung MPH Rules
Terms and Definitions
Lung Equivalent Terms, Definitions, Charts, Tables and Illustrations
C340-C349
(Excludes lymphoma and leukemia M9590-9989 and Kaposi sarcoma M9140)

Introduction
Use these rules only for cases with primary lung cancer.

Lung carcinomas may be broadly grouped into two categories, small cell and non-small cell carcinoma.
Frequently a patient may have two or more tumors in one lung and may have one or more tumors in the contralateral lung. The physician may biopsy only one of the tumors. Code the case as a single primary (See Rule M1, Note 2) unless one of the tumors is proven to be a different histology. It is irrelevant whether the other tumors are identified as cancer, primary tumors, or metastases.

Equivalent or Equal Terms
- Low grade neuroendocrine carcinoma, carcinoid
- Tumor, mass, lesion, neoplasm (for multiple primary and histology coding rules only)
- Type, subtype, predominantly, with features of, major, or with ___ differentiation

Obsolete Terms for Small Cell Carcinoma (Terms that are no longer recognized)
- Intermediate cell carcinoma (8044)
- Mixed small cell/large cell carcinoma (8045) (Code is still used; however current accepted terminology is combined small cell carcinoma)
- oat cell carcinoma (8042)
- Small cell anaplastic carcinoma (No ICD-O-3 code)
- Undifferentiated small cell carcinoma (No ICD-O-3 code)

Definitions

Adenocarcinoma with mixed subtypes (8255): A mixture of two or more of the subtypes of adenocarcinoma such as acinar, papillary, bronchoalveolar, or solid with mucin formation.

Adenosquamous carcinoma (8560): A single histology in a single tumor composed of both squamous cell carcinoma and adenocarcinoma.

Bilateral lung cancer: This phrase simply means that there is at least one malignancy in the right lung and at least one malignancy in the left lung. Do not base multiple primary decision on this phrase; bilateral does not mean this is a single primary. Use the multiple primary rules to decide whether to code bilateral lung cancers as a single or multiple primary.

Combined small cell carcinoma (8045): A small cell carcinoma that is combined with a non-small cell carcinoma. The combinations are small cell and adenocarcinoma, or squamous cell carcinoma, or large cell carcinoma.
Large cell carcinoma (8012): Large cell is a diagnosis that is used when the tumor is a non-small cell carcinoma that is undifferentiated. Because the tumor is undifferentiated, the pathologist cannot find glandular (adeno), or squamous differentiation.

Large cell neuroendocrine carcinoma (8013): A non-small cell carcinoma with neuroendocrine differentiation proven by immunohistochemical stain, currently classified as large cell carcinoma. These tumors require further study before being included as a separate category in a histologic classification.

Most invasive: The tumor with the greatest continuous extension.

Neuroendocrine carcinoma (8246): Neuroendocrine carcinoma is a group of carcinomas that include typical carcinoid tumor and small cell carcinoma. Code the specific histology when given. Code neuroendocrine carcinoma, NOS (8246) when no specific histology is documented.

Non-small cell carcinoma (8046): The term non-small cell is used two ways, as a group term describing all carcinomas that are not small cell; and as a default diagnosis when there isn’t enough tissue to classify the tumor beyond the exclusion of small cell.

Pancoast tumor: An anatomic designation (not a specific histology) for a lung cancer that starts in the upper lobe of the lung and extends outward to destroy the ribs and vertebrae. The tumor may compress or directly invade the brachial plexus (nerve bundles) of the neck, causing pain. Pancoast tumor may also be called superior sulcus tumor.

Pleomorphic carcinoma (8022): A poorly differentiated non-small cell carcinoma (squamous cell carcinoma, adenocarcinoma, or large cell carcinoma) containing spindle cells and/or giant cells or, a carcinoma containing only spindle cells and giant cells. These fall under the general category of sarcomatoid carcinoma.

Sarcomatoid carcinoma: A group of tumors that are non-small cell in type and contain spindle cells and/or giant cells. Depending on the histologic features the tumor may be designated: pleomorphic carcinoma (8022); spindle cell carcinoma (8032); giant cell carcinoma (8031), carcinosarcoma (8980); or pulmonary blastoma (8972)

Small cell carcinoma: Malignant epithelial tumor consisting of small cells. There are many types of lung cancer, but most can be categorized into one of two basic types, "small cell carcinoma" or "non-small cell carcinoma"

Undifferentiated carcinoma (8020): A high grade malignancy lacking glandular structures or other specific features that can be used to better classify the tumor. Undifferentiated carcinoma is used by pathologists when they believe the tumor is a carcinoma (not lymphoma, melanoma, or sarcoma) but they are not sure if the tumor is small cell or non-small cell.
Lung Equivalent Terms, Definitions, Charts, Tables and Illustrations
C340-C349
(Excludes lymphoma and leukemia M9590-9989 and Kaposi sarcoma M9140)

Chart 1 – Lung Histology Groups and Specific Types
Note: This chart is based on the WHO Classification of Tumors for tumors of the lung. The chart is not a complete listing of histologies that may occur in the lung.

Chart Instructions: Use this chart with multiple primary rule M10 to identify types of non-small cell carcinoma. Use this chart with the histology rules to code the most specific histologic term. The tree is arranged in descending order. Each branch is a histology group, starting with the NOS or group terms and descending into the specific types for that group. As you follow the branch down, the terms become more specific.
Lung MPH Rules
Multiple Primary Rules
Lung Multiple Primary Rules - Flowchart
(C340 - C349)
(Excludes lymphoma and leukemia M9500-9589 and Kaposi sarcoma M6140)

* Prepare one abstract. Use the histology coding rules to assign the appropriate histology code.
** Prepare two or more abstracts. Use the histology coding rules to assign the appropriate histology code to each case abstracted.

** Flowchart Key **

UNKNOWN IF SINGLE OR MULTIPLE TUMORS

<table>
<thead>
<tr>
<th>DECISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor(s) not described as metastasis.</td>
<td></td>
</tr>
</tbody>
</table>

M1

Is it impossible to determine if there is a single tumor or multiple tumors?

YES

SINGLE Primary

End of instructions for Unknown if Single or Multiple Tumors

NO

Go to Single Tumor or Multiple Tumors

SINGLE TUMOR

<table>
<thead>
<tr>
<th>DECISION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor not described as metastasis.</td>
<td></td>
</tr>
</tbody>
</table>

M2

Is there a single tumor?

YES

SINGLE Primary

End of instructions for Single Tumor.

NO

Go to Multiple Tumors.

January 1, 2007
Lung Multiple Primary Rules - Flowchart

(C340 - C349)

(Excludes lymphoma and leukemia M9500-9989 and Kaposi sarcoma M9140)

* Prepare one abstract. Use the histology coding rules to assign the appropriate histology code.
** Prepare two or more abstracts. Use the histology coding rules to assign the appropriate histology code to each case abstracted.

MULTIPLE TUMORS

Multiple tumors may be a single primary or multiple primaries.

M3

Are there tumors in sites with ICD-O-3 topology codes that are different at the second (Cxxx) and/or third character (Cxxx)?

YES

MULTIPLE Primaries**

NOTES

Tumors not described as metastases.

This is a change in rules; tumors in the trachea (C33) and in the lung (C34) were a single lung primary in the previous rules.

NO

M4

Is at least one tumor non-small cell carcinoma (8046) and another tumor small cell carcinoma (8041-8045)?

YES

MULTIPLE Primaries**

NO

M5

Is there a tumor that is adenocarcinoma with mixed subtypes (8255) and another that is bronchioalveolar (9250-9254)?

YES

MULTIPLE Primaries**

NO

Next Page

January 1, 2007
Lung Multiple Primary Rules - Flowchart

(C340 - C349)
(Excludes lymphoma and leukemia M9590-9989 and Kaposi sarcoma M9140)

* Prepare one abstract. Use the histology coding rules to assign the appropriate histology code.
** Prepare two or more abstracts. Use the histology coding rules to assign the appropriate histology code to each case abstracted.

M6

Is there a single tumor in each lung?

- **YES**
 - MULTIPLE Primaries**
 - **NOTES**: Tumors not described as metastases.

- **NO**
 - **M7**
 - Are there multiple tumors in both lungs with ICD-O-3 histology codes that are different at the first (x00x), second (x0xx) or third (xx0x) number?
 - **YES**
 - MULTIPLE Primaries**
 - **NOTES**: When there is a single tumor in each lung abstract as multiple primaries unless stated or proven to be metastatic.
 - **NO**
 - **M8**
 - Are there tumors diagnosed more than three (3) years apart?
 - **YES**
 - MULTIPLE Primaries**
 - **NO**
 - Next Page

January 1, 2007
Lung Multiple Primary Rules - Flowchart
(C340 - C349)
(Excludes lymphoma and leukemia M9590-9999 and Kaposi sarcoma M9140)

* Prepare one abstract. Use the histology coding rules to assign the appropriate histology code.
** Prepare two or more abstracts. Use the histology coding rules to assign the appropriate histology code to each case abstracted.

** MULTIPLE TUMORS, continued **

** DECISION **

** NOTES **

Tumors not described as metastases.

1. The purpose of this rule is to ensure that the case is counted as an incident (invasive) case when incidence data are analyzed.

2. Abstract as multiple primaries even if the medical record/physician states it is recurrence or progression of disease.

** M9 **

Is there an invasive tumor following an in situ tumor more than 60 days after diagnosis?

YES

MULTIPLE Primaries**

NO

** M10 **

Are there tumors with non-small cell carcinoma (8046) and a more specific non-small cell carcinoma type (Chart 1)?

YES

SINGLE Primary*

NO

Next Page
LUNG Histology Coding Rules - Flowchart
(C340 - C349)
(Excludes lymphoma and leukemia M8590-9989 and Kaposi sarcoma M9140)
SINGLE TUMOR

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Notes and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Is there no pathology/cytology specimen or is the pathology/cytology report unavailable?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>Is the specimen from a metastatic site? (there is no pathology/cytology specimen from the primary site)</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>Is only one histologic type identified?</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

1. Priority for using documents to code the histology
 - Documentation in the medical record that refers to pathologic or cytologic findings
 - Physician's reference to type of cancer (histology) in the medical record
 - CT, PET, or MRI scans
 - Chest x-rays

2. Code the specific histology when documented.

3. Code the histology to 8000 (cancer/malignant neoplasm NOS) or 8010 (carcinoma, NOS) as stated by the physician when nothing more specific is documented.

Do not code terms that do not appear in the histology description.

Example 1: Do not code squamous cell carcinoma non-keratinizing unless the words "non-keratinizing" actually appear in the diagnosis.

Example 2: Do not code bronchioloalveolar non-mucinous unless the words "non-mucinous" actually appear in the diagnosis.
LUNG Histology Coding Rules - - Flowchart
(C340 - C349)
(Excludes lymphoma and leukemia M9590-9989 and Kaposi sarcoma M9140)
SINGLE TUMOR

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Notes and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>Does the tumor have invasive and in situ components?</td>
<td>Code the invasive histologic type.</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>
| H5 | Are there multiple histologies within the same branch such as:
• cancer/malignant neoplasm NOS (8000) and a more specific histology? OR
• carcinoma, NOS (8010) and a more specific carcinoma? OR
• adenocarcinoma, NOS (8140) and a more specific adenocarcinoma? OR
• squamous cell carcinoma, NOS (8070) and a more specific squamous cell carcinoma? OR
• sarcoma, NOS (8800) and a more specific sarcoma? | The specific histology may be identified as type, subtype, predominantly, with features of, major, or with____ differentiation.
Example 1: Adenocarcinoma, predominantly mucinous. Code mucinous adenocarcinoma 8480.
Example 2: Non-small cell carcinoma, papillary squamous cell. Code papillary squamous cell carcinoma 8052. |
| | **NO** | |
| | **Next Page** | |
Lung Cancer Histology Groups

Chart 1 – Lung Histology Groups and Specific Types

Note: This chart is based on the WHO Classification of Tumors for tumors of the lung. The chart is not a complete listing of histologies that may occur in the lung.

Chart Instructions: Use this chart with multiple primary rule M10 to identify types of non-small cell carcinoma. Use this chart with the histology rules to code the most specific histologic term. The tree is arranged in descending order. Each branch is a histology group, starting with the NOS or group terms and descending into the specific types for that group. As you follow the branch down, the terms become more specific.
LUNG Histology Coding Rules - Flowchart
(C340 - C349)
(Excludes lymphoma and leukemia M9590-9989 and Kaposi sarcoma M9140)

SINGLE TUMOR

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Notes and Examples</th>
</tr>
</thead>
</table>
| H6 | Are there multiple specific histologies or is there a non-specific with multiple specific histologies? | YES: Code the appropriate combination/mixed code (Table 1).

NO: The specific histologies may be identified as type, subtype, predominantly, with features of, major or with differentiation.

Example 2 (multiple specific histologies): Combined small cell and squamous cell carcinoma. Code combined small cell carcinoma 8045.

Example 3 (non-specific with multiple specific histologies): Adenocarcinoma with papillary and clear cell features. Code adenocarcinoma with mixed subtypes 8255.

| H7 | Code the numerically higher ICD-O-3 code. |
Table 1 – Combination/Mixed Codes for Lung Histologies

Table Instructions: Use this table to select combination/mixed histology codes. Compare the terms in the diagnosis to the terms in columns 1 and 2. If the terms match, abstract the case using the ICD-O-3 histology code in column 4. Use the combination/mixed codes listed in this table only when the histologies in the tumor match the histologies listed below. Use the combination/mixed codes for a single tumor when all histologies are present in a single tumor.

Note: This table is not a complete listing of histologies that may occur in the lung.

<table>
<thead>
<tr>
<th>Column 1: Required Terms</th>
<th>Column 2: Additional Required Terms</th>
<th>Column 3: ICD-O-3 Term</th>
<th>Column 4: ICD-O-3 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant cell carcinoma AND spindled cell carcinoma</td>
<td></td>
<td>Giant cell and spindled cell carcinoma</td>
<td>8030</td>
</tr>
<tr>
<td>Small cell carcinoma AND one of the histologies in Column 2</td>
<td>Adenocarcinoma</td>
<td>Combined small cell carcinoma</td>
<td>8045</td>
</tr>
<tr>
<td></td>
<td>Large cell carcinoma</td>
<td>Mixed small cell carcinoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Squamous cell carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma* AND large cell nonkeratinizing</td>
<td></td>
<td>Squamous cell carcinoma, large cell, nonkeratinizing</td>
<td>8072</td>
</tr>
<tr>
<td>Squamous cell carcinoma AND large cell nonkeratinizing</td>
<td></td>
<td>Squamous cell carcinoma, small cell, nonkeratinizing</td>
<td>8073</td>
</tr>
<tr>
<td>Squamous cell carcinoma* AND one of the histologies in Column 2</td>
<td>Spindle cell carcinoma</td>
<td>Squamous cell carcinoma, spindle cell</td>
<td>8074</td>
</tr>
<tr>
<td></td>
<td>Sarcomatoid</td>
<td>Squamous cell carcinoma, sarcomatoid</td>
<td></td>
</tr>
<tr>
<td>A combination of at least two of the histologies in Column 2**</td>
<td>Acinar</td>
<td>Adenocarcinoma with mixed subtypes**</td>
<td>8255**</td>
</tr>
<tr>
<td></td>
<td>Bronchioloalveolar carcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchioloalveolar carcinoma non mucinous (Clara cell/type II pneumocyte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchioloalveolar carcinoma mucinous (goblet cell)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchioloalveolar carcinoma mixed mucinous and non-mucinous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clear cell adenocarcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papillary adenocarcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid adenocarcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Well-differentiated fetal adenocarcinoma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Staging Lung Cancer

Nair A et al. Radiographics 2011;31:215-238
Collaborative Stage Version 2

TNM 7 Schema List (v.02.04)

<table>
<thead>
<tr>
<th>Natural Order</th>
<th>Alphabetical Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdnexaUterineOther</td>
<td>GIST Small Intestine</td>
</tr>
<tr>
<td>AdrenalGland</td>
<td>GIST Stomach</td>
</tr>
<tr>
<td>AmpullaVater</td>
<td>Gum Lower</td>
</tr>
<tr>
<td>Anus</td>
<td>Gum Other</td>
</tr>
<tr>
<td>Appendix</td>
<td>Gum Upper</td>
</tr>
<tr>
<td>BileDuctsDistal</td>
<td>Heart Mediastinum</td>
</tr>
<tr>
<td>BileDuctsIntraHepat</td>
<td>Heme Reticul</td>
</tr>
<tr>
<td>BileDuctsPerihilar</td>
<td>Hypopharynx</td>
</tr>
<tr>
<td>billary Other</td>
<td>Ill Defined Other</td>
</tr>
<tr>
<td>Bladder</td>
<td>Intracranial Gland</td>
</tr>
<tr>
<td>Bone</td>
<td>Kaposi Sarcoma</td>
</tr>
<tr>
<td>Brain</td>
<td>Kidney Parenchyma</td>
</tr>
<tr>
<td>Breast</td>
<td>Kidney Renal Pelvis</td>
</tr>
<tr>
<td>BuccalMucosa</td>
<td>Lacrimal Gland</td>
</tr>
<tr>
<td>CarcinoidAppendix</td>
<td>Lacrimal Sac</td>
</tr>
<tr>
<td>Cervix</td>
<td>Larynx Glottic</td>
</tr>
<tr>
<td>CNS Other</td>
<td>Larynx Other</td>
</tr>
<tr>
<td>Colon</td>
<td>Larynx Subglottic</td>
</tr>
<tr>
<td>Conjunctiva</td>
<td>Larynx Supraglottic</td>
</tr>
<tr>
<td>CorpusAdenosarcoma</td>
<td>Lip Lower</td>
</tr>
<tr>
<td>CorpusCarcinoma</td>
<td>Lip Other</td>
</tr>
<tr>
<td>CorpusSarcoma</td>
<td>Lip Upper</td>
</tr>
<tr>
<td>CysticDuct</td>
<td>Liver</td>
</tr>
<tr>
<td>EndocrineOther</td>
<td>Lung</td>
</tr>
<tr>
<td>EpiglottisArterio</td>
<td>Lymphoma</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Lymphoma Ocular Adnexa</td>
</tr>
<tr>
<td>EsophagusGEJunction</td>
<td>Melanoma Buccal mucosa</td>
</tr>
<tr>
<td>MelanomaChoroid</td>
<td>Melanoma Glottic</td>
</tr>
<tr>
<td>MelanomaLarynxOther</td>
<td>Palate Hard</td>
</tr>
<tr>
<td>MelanomaLarynxSubglottic</td>
<td>Palate Soft</td>
</tr>
<tr>
<td>MelanomaLarynxSupraglottic</td>
<td>Pancreas Body Tail</td>
</tr>
<tr>
<td>MelanomaLipLower</td>
<td>Pancreas Head</td>
</tr>
<tr>
<td>MelanomaLipOther</td>
<td>Pancreas Other</td>
</tr>
<tr>
<td>MelanomaLipUpper</td>
<td>Parotid Gland</td>
</tr>
<tr>
<td>MelanomaMouthOther</td>
<td>Penis</td>
</tr>
<tr>
<td>MelanomaNasalCavity</td>
<td>Peritoneum</td>
</tr>
<tr>
<td>MelanomaNasopharynx</td>
<td>Peritoneum Female Gen</td>
</tr>
<tr>
<td>MelanomaOropharynx</td>
<td>Pharyngeal Tonsil</td>
</tr>
<tr>
<td>MelanomaPalateHard</td>
<td>Pharynx Other</td>
</tr>
<tr>
<td>MelanomaPalateSoft</td>
<td>Placenta</td>
</tr>
<tr>
<td>MelanomaPharynxOther</td>
<td>Pleura</td>
</tr>
<tr>
<td>MelanomaSinusEthmoid</td>
<td>Prostate</td>
</tr>
<tr>
<td>MelanomaSinusMaxillary</td>
<td>Rectum</td>
</tr>
<tr>
<td>MelanomaSinusOther</td>
<td>Respiratory Other</td>
</tr>
<tr>
<td>MelanomaSkin</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>Melanoma Tongue Anterior</td>
<td>Retroperitoneum</td>
</tr>
<tr>
<td>Melanoma Tongue Base</td>
<td>Salivary Gland Other</td>
</tr>
<tr>
<td>MerkelCellPenis</td>
<td>Scrotum</td>
</tr>
<tr>
<td>MerkelCellScrotum</td>
<td>Sinus Ethmoid</td>
</tr>
<tr>
<td>MerkelCellSkin</td>
<td>Sinus Maxillary</td>
</tr>
<tr>
<td>MerkelCellVulva</td>
<td>Sinus Other</td>
</tr>
<tr>
<td>Middle Ear</td>
<td>Skin</td>
</tr>
<tr>
<td>Mouth Other</td>
<td>Skin Eye lid</td>
</tr>
<tr>
<td>Mycosis Fungoides</td>
<td>Small Intestine</td>
</tr>
<tr>
<td>Myeloma Plasma Cell Disorder</td>
<td>Soft Tissue</td>
</tr>
<tr>
<td>Myeloma Plasma Cell Myeloma</td>
<td>Stomach</td>
</tr>
</tbody>
</table>
Lung

Lung

C34.0-C34.3, C34.8-C34.9

- C34.0 Main bronchus
- C34.1 Upper lobe, lung
- C34.2 Middle lobe, lung
- C34.3 Lower lobe, lung
- C34.8 Overlapping lesion of lung
- C34.9 Lung, NOS

Note: Laterality must be coded for this site (except carina).

<table>
<thead>
<tr>
<th>CS Tumor Size</th>
<th>CS Site-Specific Factor 7 = 988</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Extension</td>
<td>CS Site-Specific Factor 8 = 988</td>
</tr>
<tr>
<td>CS Tumor Size/Ext Eval</td>
<td>CS Site-Specific Factor 9 = 988</td>
</tr>
<tr>
<td>CS Lymph Nodes</td>
<td>CS Site-Specific Factor 10 = 988</td>
</tr>
<tr>
<td>CS Lymph Nodes Eval</td>
<td>CS Site-Specific Factor 11 = 988</td>
</tr>
<tr>
<td>Regional Nodes Positive</td>
<td>CS Site-Specific Factor 12 = 988</td>
</tr>
<tr>
<td>Regional Nodes Examined</td>
<td>CS Site-Specific Factor 13 = 988</td>
</tr>
<tr>
<td>CS Mets at DX</td>
<td>CS Site-Specific Factor 14 = 988</td>
</tr>
<tr>
<td>CS Mets Eval</td>
<td>CS Site-Specific Factor 15 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 1</td>
<td>CS Site-Specific Factor 16 = 988</td>
</tr>
<tr>
<td>Separate Tumor Nodules - Ipsilateral Lung</td>
<td>CS Site-Specific Factor 17 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 2</td>
<td>CS Site-Specific Factor 18 = 988</td>
</tr>
<tr>
<td>Pleural/Elastic Layer Invasion (PL) by H and E or Elastic Stain</td>
<td>CS Site-Specific Factor 19 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 3 = 988</td>
<td>CS Site-Specific Factor 20 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 4 = 988</td>
<td>CS Site-Specific Factor 21 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 5 = 988</td>
<td>CS Site-Specific Factor 22 = 988</td>
</tr>
<tr>
<td>CS Site-Specific Factor 6 = 988</td>
<td>CS Site-Specific Factor 23 = 988</td>
</tr>
</tbody>
</table>

Histology Inclusion Table AJCC 7th ed.
Histology Exclusion Table AJCC 6th ed.
AJCC TNM 7 Stage
AJCC TNM 6 Stage
Lung

CS Extension

- **Note 1:** Direct extension to or other involvement of structures considered M1 in AJCC staging is coded in the data item CS Mets at DX. This includes: sternum; skeletal muscle; skin of chest; contralateral lung or mainstem bronchus; separate tumor nodule(s) in contralateral lung.
- **Note 2:** Distance from Carina: Assume tumor is greater than or equal to 2 centimeters (cm) from carina if lobectomy, segmental resection, or wedge resection is done.
- **Note 3:** Opposite Lung: If no mention is made of the opposite lung on a chest x-ray, assume it is not involved.
- **Note 4:** Bronchopneumonia: Bronchopneumonia is not the same thing as obstructive pneumonitis and should not be coded as such. Bronchopneumonia is an acute inflammation of the walls of the bronchioles, usually a result of spread of infection from the upper to the lower respiratory tract. Obstructive pneumonitis is a combination of atelectasis, bronchiectasis with mucous plugging, and parenchymal inflammation that develops distal to an obstructing endobronchial lesion.
- **Note 5:** Pulmonary Artery/Vein: An involved pulmonary artery/vein in the mediastinum is coded to 700 (involvement of major blood vessel). However, if the involvement of the artery/vein appears to be only within lung tissue and not in the mediastinum, it is not coded to 700.
- **Note 6:** Vocal cord paralysis (resulting from involvement of recurrent branch of the vagus nerve), superior vena cava (SVC) obstruction, or compression of the trachea or the esophagus may be related to direct extension of the primary tumor or to lymph node involvement. The treatment options and prognoses associated with these manifestations of disease extent fall within the T4-Stage IIIB category; therefore, generally use code 700 for these manifestations. However, if the primary tumor is peripheral and clearly unrelated to vocal cord paralysis, SVC obstruction, or compression of the trachea or the esophagus, code these manifestations as mediastinal lymph node involvement (code 200) in CS Lymph Nodes, unless there is a statement of involvement by direct extension from the primary tumor.
- **Note 7:** Pleural effusion and pericardial effusion are coded in CS Mets at DX.
- **Note 8:** In some cases, the determination of the T category for TNM 6 or 7 staging is based on this field. CS Tumor Size, CS Mets at DX, and CS Site-Specific Factor 1.
- **Note 9:** Code to the highest applicable code for CS Extension and then code the absence or presence of separate ipsilateral tumor nodules in CS Site-Specific Factor 1, Separate Tumor Nodules/ipsilateral lung. Code separate tumor nodules in contralateral lung in CS Mets at DX.
- **Note 10:** Specific information about visceral pleural invasion is captured in codes 410-430 and CS Site-Specific Factor 2, Visceral Pleural Invasion (VPI)/Elastic Layer. Elastic layer involvement has prognostic significance for lung cancer.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>TNM 7 Map</th>
<th>TNM 6 Map</th>
<th>SS77 Map</th>
<th>SS2000 Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>In situ, intraepithelial, noninvasive</td>
<td>*</td>
<td>#</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Tumor confined to one lung WITHOUT extension or conditions described in codes 200-800 EXCLUDING primary in main stem bronchus EXCLUDING superficial tumor as described in code 110</td>
<td>^</td>
<td>*</td>
<td>^</td>
<td>^</td>
</tr>
<tr>
<td>110</td>
<td>Superficial tumor of any size with invasive component limited to bronchial wall, with or without proximal extension to the main stem bronchus</td>
<td></td>
<td></td>
<td>L</td>
<td>**</td>
</tr>
</tbody>
</table>
T1 is defined as a tumor 3 cm or less in greatest dimension, surrounded by lung or visceral pleura, without bronchoscopic evidence of invasion more proximal than the lobar bronchus (i.e., not in the main bronchus). T1a is defined as a tumor 2 cm or less in greatest dimension (upper left). T1a is also defined as a superficial spreading tumor of any size with its invasive component limited to the bronchial wall, which may extend proximally to the main bronchus (lower left). T1b is defined as a tumor more than 2 cm but 3 cm or less in greatest dimension (right).
CS and TNM

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>TNM 7 Map</th>
<th>TNM 6 Map</th>
<th>SS77 Map</th>
<th>SS2000 Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>In situ, intraepithelial, noninvasive</td>
<td>^</td>
<td>*</td>
<td>#</td>
<td>**</td>
</tr>
<tr>
<td>100</td>
<td>Tumor confined to one lung WITHOUT extension or conditions described in codes 200-800 EXCLUDING primary in main stem bronchus EXCLUDING superficial tumor as described in code 110</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>110</td>
<td>Superficial tumor of any size with invasive component limited to bronchial wall, with or without proximal extension to the main stem bronchus</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>115</td>
<td>Stated as T1a with no other information on extension</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>120</td>
<td>Stated as T1b with no other information on extension</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>125</td>
<td>Stated as T1[NOS] with no other information on extension</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>200</td>
<td>Extension from other parts of lung to main stem bronchus, NOS EXCLUDING superficial tumor as described in code 110 Tumor involving main stem bronchus greater than or equal to 2.0 cm from carina (primary in lung or main stem bronchus)</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
<tr>
<td>210</td>
<td>Tumor involving main stem bronchus, NOS (Distance from carina not stated and no surgery as described in Note 2)</td>
<td>^</td>
<td>*</td>
<td>L</td>
<td>**</td>
</tr>
</tbody>
</table>
* Can you please clarify the difference between the two codes. For example, you are staging a case based on x-ray findings and the MD states there is a mass in RUL. He gives no further information on extension. I would think code 100 would apply. If so, when would be the proper time to use code 300?

* Code 100 is generally used when there is a tumor size and the lesion/mass is clearly confined to the lung. Code 300 would be used when you have limited information, such as this case. Do you have a size from the x-ray or any other type of report?

* If you can find a size, then you could use 100 with that size. Based on the information you have given, you would not get a T value on this case unless you can find a tumor size.

* Code 300 would also be used if the only information you had was "tumor confined to lung."
CS and TNM

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Stage</th>
<th>Residual</th>
<th>Regrowth</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Localized, NOS</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>400</td>
<td>Atelectasis/obstructive pneumonitis that extends to the hilar region but does not involve the entire lung Or atelectasis/obstructive pneumonitis, NOS</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>410</td>
<td>Extension to but not into pleura, including invasion of elastic layer BUT not through the elastic layer.</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>420</td>
<td>Invasion of pleura, including invasion through the elastic layer</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>430</td>
<td>Invasion of pleura, NOS</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>440</td>
<td>Pulmonary ligament</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>450</td>
<td>OBSOLETE DATA RETAINED V0200</td>
<td>ERROR</td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>455</td>
<td>Stated as T2a with no other information on extension</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>460</td>
<td>Stated as T2b with no other information on extension</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>465</td>
<td>Stated as T2 [NOS] with no other information on size or extension</td>
<td></td>
<td></td>
<td>RE</td>
<td>**</td>
</tr>
<tr>
<td>500</td>
<td>Tumor of/involving main stem bronchus less than 2.0 cm from carina</td>
<td></td>
<td></td>
<td>L</td>
<td>**</td>
</tr>
</tbody>
</table>
Atelectasis or obstructive pneumonia

CS and TNM

- T2a
 - ≤5CM
 - ≥2CM
 - >3-5CM

- T2b
 - ≤2CM
 - >5-7CM

- T2a
 - ≤5CM
 - >5-7CM

- T2b
 - >5-7CM
Atelectasis Due to Pleural Effusion

* 15mm mass in left lung apex highly suspicious for malignancy.
* There is massive left sided pleural effusion with atelectasis and collapse of the left lung.
* Would I use code 550 for CS Ext if atelectasis is caused by pleural effusion and the pleural effusion is malignant?

* Extension code 550 is the appropriate code, based on the atelectasis and the collapse of the left lung.
* The pleural effusion, now coded in CS Mets at DX, would be code 15 since malignant pleural effusion is on the same side as the primary malignancy.
Atelectasis

* The collapse or closure of the lung resulting in reduced or absent gas exchange (not same as pneumothorax)
* May affect part or all of one lung
* May be acute or chronic
* Respiratory distress

Bronchopneumonia

* Acute inflammation of the walls of the bronchioles
* Characterized by multiple foci of isolated, acute consolidation in one or more pulmonary lobules
* **Consolidation** is the swelling (edema or inflammatory exudate) or hardening of the lung tissue
CS and TNM
A tumor that falls short of completely traversing the elastic layer of the visceral pleura is defined as PL0. A tumor that extends through the elastic layer is defined as PL1 and one that extends to the surface of the visceral pleural as PL2. Extension of the tumor to the parietal pleura is defined as PL3.
Pleural and Pericardial Effusion

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 720 | OBSOLETE DATA RETAINED V0200
Pleural effusion reclassified as distant metastasis in AJCC 7th Edition, see CS Mets at DX code 15
Malignant pleural effusion
Pleural effusion, NOS |
| 760 | OBSOLETE DATA RETAINED V0200
Separate pleural tumor foci reclassified as distant metastasis in AJCC 7th Edition, see CS Mets at DX code 24
Pleural tumor foci separate from direct pleural invasion |
| 790 | OBSOLETE DATA RETAINED V0200
Pericardial effusion reclassified as distant metastasis, see CS Mets at DX code 20
Pericardial effusion, NOS; malignant pericardial effusion |
T3 includes separate tumor nodule(s) in the same lobe. T4 includes separate tumor nodule(s) in a different ipsilateral lobe.
CS and TNM

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td>Invasion of phrenic nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 600 | Direct extension to: Brachial plexus, inferior branches or NOS, from superior sulcus
 | Chest (thoracic) wall | | | | | | | |
| | Diaphragm | | | | | | |
| | Pancoast tumor (superior sulcus syndrome), NOS | | | | | | |
| | Parietal pleura | | | | | | |
| | Note: For separate lesion in chest wall or diaphragm, see CS Mets at DX. | | | | | | |
| 610 | Superior sulcus tumor WITH encasement of subclavian vessels | | | | | | |
| | OR WITH unequivocal involvement of superior branches of brachial plexus | | | | | | |
| | (C8 or above) | | | | | | |
| 650 | OBSOLETE DATA RETAINED V0200 | | | | | | |
| | Separate tumor nodules reclassified in AJCC 7th Edition, coded in CS SSF 1 | | | | | | |
| | Multiple masses/individual tumor nodule(s) in the SAME lobe | | | | | | |
| | "Satellite nodules" in SAME lobe | | | | | | |
| 680 | Tumor confined to carina | | | | | | |
| 700 | Blood vessel(s), major (EXCEPT aorta and inferior vena cava, see codes 740 and 770)
 | Azygos vein | | | | | | | |
| | Pulmonary artery or vein | | | | | | |
| | Superior vena cava (SVC syndrome) | | | | | | |
| | Carina from lung/mainstem bronchus | | | | | | |
| | Compression of esophagus or trachea not specified as direct extension | T4 | | | | | |
| | Esophagus | | | | | | |
| | Mediastinum, extrapulmonary or NOS | | | | | | |
| | Nerve(s): | | | | | | |
| | Cervical sympathetic (Horner syndrome) | | | | | | |
| | Brachial plexus (Hutchinson syndrome) | | | | | | |
T4 is defined as tumor of any size that invades any of the following: mediastinum, heart, great vessels (upper right), trachea (upper left), recurrent laryngeal nerve, esophagus (lower right), vertebral body (lower left), carina (middle left and right), separate tumor nodule(s) in a different ipsilateral lobe.
T4 includes tumor invasion of the superior vena cava and heart.
CS and TNM

T4 includes tumor invasion of the aorta, esophagus, and vertebral body.
Lung

CS Tumor Size/Ext Eval

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | Does not meet criteria for AJCC pathologic staging:
 | Evaluation based on physical examination, imaging examination, or other non-invasive clinical evidence. No surgical resection done. |
| 1 | Does not meet criteria for AJCC pathologic staging:
 | Evaluation based on endoscopic examination, diagnostic biopsy, including fine needle aspiration biopsy, or other invasive techniques, including surgical observation without biopsy. No surgical resection done. |
| 2 | Meets criteria for AJCC pathologic staging:
 | Evidence derived from autopsy (tumor was suspected or diagnosed prior to autopsy). No surgical resection done. |
| 3 | Either meets criteria for AJCC pathologic staging:
 | A. Surgical resection performed WITHOUT pre-surgical systemic treatment or radiation
 | OR surgical resection performed, unknown if pre-surgical systemic treatment or radiation performed
 | AND Evaluation based on evidence acquired before treatment, supplemented or modified by the additional evidence acquired during and from surgery, particularly from pathologic examination of the resected specimen.
 | B. No surgical resection done. Evaluation based on positive biopsy of highest T classification. |
| 5 | Does not meet criteria for AJCC yp-pathologic (yp) staging:
 | Surgical resection performed AFTER neoadjuvant therapy and tumor size/extension based on clinical evidence, unless the pathologic evidence at surgery (AFTER neoadjuvant) is more extensive (see code 6). |
| 6 | Meets criteria for AJCC yp-pathologic (yp) staging:
 | Surgical resection performed AFTER neoadjuvant therapy AND tumor size/extension based on pathologic evidence, because pathologic evidence at surgery is more extensive than clinical evidence before treatment. |
| 8 | Meets criteria for autopsy (a) staging:
 | Evidence from autopsy only (tumor was unsuspected or undiagnosed prior to autopsy) |
| 9 | Unknown if surgical resection done
 | Not assessed, cannot be assessed
 | Unknown if assessed
 | Not documented in patient record |
CS Lymph Nodes

Lung

CS Lymph Nodes

- Note 1: Code only regional nodes and nodes, NOS, in this field. Distant nodes are coded in CS Mets at DX. For illustration of nodes stations, see Part I.
- Note 2: If at mediastinoscopy/laparoscopic mediastinal lymph node dissection, the description is “mass,” “adenopathy,” or “enlargement” of any of the lymph nodes named as regional in codes 100 and 200, assume that at least regional lymph nodes are involved. If there is any mention of bilateral or contralateral mass, adenopathy or lymph node involvement, use code 600.
- Note 3: The words “no evidence of spread” or “remaining examination negative” are sufficient information to consider regional lymph nodes negative in the absence of any statement about nodes.
- Note 4: Vocal cord paralysis (resulting from involvement of the recurrent branch of the vagus nerve), superior vena cava (SVC) obstruction, or compression of the trachea or the esophagus, may be related to direct extension of the primary tumor or to lymph node involvement. The treatment options and prognosis associated with these manifestations of disease extent fall within the T4-Stage IIIIB category, therefore, generally use CS Extension code 700 for these manifestations and not CS lymph nodes. However, if the primary tumor is peripheral and clearly unrelated to vocal cord paralysis, SVC obstruction, or compression of the trachea or the esophagus, code these manifestations as mediastinal lymph node involvement (code 200) in CS Lymph Nodes, unless there is a statement of involvement by direct extension from the primary tumor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>TNM 7 Map</th>
<th>TNM 6 Map</th>
<th>SS77 Map</th>
<th>SS2000 Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No regional lymph node involvement</td>
<td>N0</td>
<td>N0</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>100</td>
<td>Regional lymph nodes, ipsilateral: Bronchial</td>
<td>N1</td>
<td>N1</td>
<td>RN</td>
<td>RN</td>
</tr>
<tr>
<td></td>
<td>Hilary (brachopulmonary) (proximal lobar) (pulmonary root)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intrapulmonary nodes, including involvement by direct extension:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interlobar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lobar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subsegmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paratracheal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stated as N1 with no other information on regional lymph nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Regional lymph nodes, ipsilateral: Aortic (above diaphragm) NOS:</td>
<td>N2</td>
<td>N2</td>
<td>RN</td>
<td>RN</td>
</tr>
<tr>
<td></td>
<td>Periaprenal, NOS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ascending aorta (phrenic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraaortic (aortico-pulmonary window)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carinal (tracheobronchial) (tracheal bifurcation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mediastinal, NOS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CS Lymph Nodes
REGIONAL LYMPH NODES

* NX Regional lymph nodes cannot be assessed
* N0 No regional lymph node metastases
* N1 Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension
* N2 Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
* N3 Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s)
* NX Regional lymph nodes cannot be assessed
* N0 No regional lymph node metastases
* N1 Same side
 * Direct Extension
 * Hilar Lymph node(s)
 * Intrapulmonary Lymph node(s)
 * Peribronchial Lymph node(s)
* N2 Same side
 * Mediastinal Lymph node(s)
 * Subcarinal Lymph node(s)
* N3 Contralateral
 * Hilar Lymph node(s)
 * Mediastinal Lymph node(s)
 * Any scalene Lymph node(s)
 * Any supraclavicular lymph node(s)

http://www.chestandvascularurgerypc.com/images/naruke.jpg
CS Site-Specific Factor 1
Separate Tumor Nodules - Ipsilateral Lung

- **Note 1:** Separate tumor nodules in the ipsilateral lung are coded separately from CS Extension. Separate tumor nodules in the contralateral lung are coded in CS Mets at DX.
- **Note 2:** Separate tumor nodules can be defined clinically (by imaging) and/or pathologically.
- **Note 3:** If separate tumor nodules are not mentioned in imaging and/or pathological reports, use code 000.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No separate tumor nodules noted</td>
</tr>
<tr>
<td>010</td>
<td>Separate tumor nodules in ipsilateral lung, same lobe</td>
</tr>
<tr>
<td>020</td>
<td>Separate tumor nodules in ipsilateral lung, different lobe</td>
</tr>
<tr>
<td>030</td>
<td>020 + 010 Separate tumor nodules, ipsilateral lung, same and different lobe</td>
</tr>
<tr>
<td>040</td>
<td>Separate tumor nodules, ipsilateral lung, unknown if same or different lobe</td>
</tr>
<tr>
<td>888</td>
<td>OBSOLETE DATA CONVERTED V0200 See code 988 Not applicable for this site</td>
</tr>
<tr>
<td>988</td>
<td>Not applicable: Information not collected for this case (May include cases converted from code 888 used in CSv1 for “Not applicable” or when the item was not collected. If this item is required to derive T, N, M, or any stage, use of code 988 may result in an error.)</td>
</tr>
<tr>
<td>999</td>
<td>Unknown if separate tumor nodules Separate tumor nodules cannot be assessed Not documented in patient record</td>
</tr>
</tbody>
</table>
Lung

CS Site-Specific Factor 2

Pleural/Elastic Layer Invasion (PL) by H and E or Elastic Stain

- Note 1: AJCC Staging Manual 7th Edition includes a standardized and precise definition of pleural/elastic layer invasion (PL). There are four categories:
 - PL0 - Tumor that is surrounded by lung parenchyma or invades superficially into the pleural connective tissue beneath the elastic layer but fails short of completely traversing the elastic layer of the pleura.
 - PL1 - Tumor that invades beyond the elastic layer.
 - PL2 - Tumor that extends to the surface of the visceral pleura.
 - PL3 - Tumor that invades the parietal pleura.

Categories PL1 and PL2 are considered pleural invasion for staging and are classified as at least a T2. PL3 is classified as at least a T3. PL0 is not considered pleural invasion for TNM staging, and the T category is assigned based on other criteria. Other criteria can also raise the T category for PL1-3 tumors.

When pathologists have difficulty assessing the relationship of the tumor to the elastic layer on routine hematoxylin and eosin (H and E) stains, they may perform a special elastic stain to make the determination.

- Note 2: Code results as stated on the pathology report. Code 998 if no histologic examination of pleura to assess pleural layer invasion.
- Note 3: If pleural/elastic layer invasion (PL) is not mentioned on the pathology report, code 999.
- Note 4: An FNA is not a histologic specimen and is not adequate to assess pleural layer invasion. If only an FNA is available, use code 998.
- Note 5: Metastasis to the pleura, that is pleural tumor foci or nodules separate from direct invasion, are coded in CS Mets at Dx (code 24).

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PL 0</td>
</tr>
<tr>
<td></td>
<td>No evidence of visceral pleural invasion (PL)</td>
</tr>
<tr>
<td></td>
<td>Tumor does not completely traverse the elastic layer</td>
</tr>
<tr>
<td>010</td>
<td>PL 1</td>
</tr>
<tr>
<td></td>
<td>Invasion beyond the visceral elastic pleura, but limited to the pulmonary pleura</td>
</tr>
<tr>
<td></td>
<td>Tumor extends through the elastic layer</td>
</tr>
<tr>
<td>020</td>
<td>PL 2</td>
</tr>
<tr>
<td></td>
<td>Invasion to the surface of the pulmonary pleura</td>
</tr>
<tr>
<td></td>
<td>Tumor extends to the surface of the visceral pleura</td>
</tr>
<tr>
<td>030</td>
<td>PL 3</td>
</tr>
<tr>
<td></td>
<td>Tumor extends to the parietal pleura</td>
</tr>
<tr>
<td>040</td>
<td>Invasion of pleura, NOS</td>
</tr>
<tr>
<td>888</td>
<td>OBSOLETE DATA CONVERTED V0200</td>
</tr>
<tr>
<td></td>
<td>See code 988</td>
</tr>
<tr>
<td></td>
<td>Not applicable for this site</td>
</tr>
<tr>
<td>988</td>
<td>Not applicable: Information not collected for this case (May include cases converted from code 888 used in CsV1 for "Not applicable" or when the item was not collected. If this item is required to derive T, N, M, or any stage, use of code 988 may result in an error.)</td>
</tr>
</tbody>
</table>
A tumor that falls short of completely traversing the elastic layer of the visceral pleura is defined as PL0. A tumor that extends through the elastic layer is defined as PL1 and one that extends to the surface of the visceral pleural as PL2. Extension of the tumor to the parietal pleura is defined as PL3.
Treatment Options

http://livingwithcancerfacts.com
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Small Cell Lung Cancer

Version 1.2014

NCCN.org
Small Cell Lung Cancer

<table>
<thead>
<tr>
<th>LIMITED STAGE</th>
<th>EXTENSIVE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any T</td>
<td>Any T</td>
</tr>
<tr>
<td>Any N</td>
<td>Any N</td>
</tr>
<tr>
<td>M0</td>
<td>M1a</td>
</tr>
<tr>
<td></td>
<td>M1b</td>
</tr>
<tr>
<td>Confined to Chest</td>
<td>Includes: T3-4 due to multiple lung nodules or tumor/nodal volume too large to be encompassed in a tolerable radiation plan</td>
</tr>
</tbody>
</table>

Exception: T3-4 due to multiple lung nodules that do not fit in a tolerable radiation field
Small Cell Lung Cancer

LIMITED STAGE

* Combination chemotherapy and radiation therapy to the chest.
* Combination chemotherapy for patients with lung problems or who are very ill.
* Surgery followed by chemotherapy or chemotherapy plus radiation therapy to the chest.
* Clinical trials of new chemotherapy, surgery, and radiation treatments

EXTENSIVE STAGE

* Combination chemotherapy.
* Radiation therapy to the brain, spine, bone, or other parts of the body where the cancer has spread, as palliative therapy to relieve symptoms and improve quality of life.
* Clinical trials of new chemotherapy treatments.
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Non-Small Cell Lung Cancer

Version 2.2013

NCCN.org

NCCN Guidelines for Patients™ available at www.nccn.com
Lung Treatment Options by Stage

Stage I Non-Small Cell Lung Cancer

- Surgery (wedge resection, segmental resection, sleeve resection, or lobectomy).
- External radiation therapy (for patients who cannot have surgery or choose not to have surgery).
- A clinical trial of chemotherapy or radiation therapy following surgery.
- A clinical trial of surgery followed by chemoprevention.
- A clinical trial of treatment given through an endoscope, such as photodynamic therapy (PDT).
Lung Treatment Options by Stage

Stage II Non-Small Cell Lung Cancer

• Surgery (wedge resection, segmental resection, sleeve resection, lobectomy, or pneumonectomy).
• Chemotherapy followed by surgery.
• Surgery followed by chemotherapy.
• External radiation therapy (for patients who cannot have surgery or choose not to have surgery).
• A clinical trial of radiation therapy following surgery.
Non-Small Cell Lung Cancer

Source: National Cancer Institute Cancer Topics NSCLC

<table>
<thead>
<tr>
<th>Stage (TNM Staging Criteria)</th>
<th>Standard Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occult NSCLC</td>
<td>Surgery</td>
</tr>
<tr>
<td>Stage 0 NSCLC</td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Endobronchial therapies</td>
</tr>
<tr>
<td>Stage I NSCLC</td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy</td>
</tr>
<tr>
<td>Stage II NSCLC</td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Neoadjuvant chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Adjuvant chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy</td>
</tr>
</tbody>
</table>
Lung Treatment Options by Stage:

Stage IIIA Non-Small Cell Lung Cancer

• Surgery followed by chemotherapy.
• Chemotherapy followed by surgery.
• Surgery followed by chemotherapy combined with radiation therapy.
• Surgery followed by radiation therapy.
• A clinical trial of new combinations of treatments
Lung Treatment Options by Stage

Cancer Cannot be Removed w/ Surgery

• Chemotherapy and radiation therapy given as separate treatments over the same period of time.

• External radiation therapy alone (for patients who cannot be treated with combined therapy, as palliative treatment to relieve symptoms / improve quality of life).

• Internal radiation therapy or laser surgery, as palliative treatment to relieve symptoms and improve the quality of life.

• A clinical trial of new combinations of treatments
Non-Small Cell Lung Cancer

Source: National Cancer Institute Cancer Topics NSCLC

<table>
<thead>
<tr>
<th>Stage (TNM Staging Criteria)</th>
<th>Standard Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IIIA NSCLC</td>
<td></td>
</tr>
<tr>
<td>Resected or resectable disease</td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Neoadjuvant therapy</td>
</tr>
<tr>
<td></td>
<td>Adjuvant therapy</td>
</tr>
<tr>
<td>Unresectable disease</td>
<td>Radiation therapy</td>
</tr>
<tr>
<td></td>
<td>Chemoradiation therapy</td>
</tr>
<tr>
<td>Superior sulcus tumors</td>
<td>Radiation therapy alone</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy and surgery</td>
</tr>
<tr>
<td></td>
<td>Concurrent chemotherapy with radiation therapy and surgery</td>
</tr>
<tr>
<td></td>
<td>Surgery alone (for selected patients)</td>
</tr>
<tr>
<td>Chest wall tumors</td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Surgery and radiation therapy</td>
</tr>
<tr>
<td></td>
<td>Chemotherapy combined with radiation therapy and/or surgery</td>
</tr>
</tbody>
</table>
Non-Small Cell Lung Cancer

Source: National Cancer Institute Cancer Topics NSCLC

<table>
<thead>
<tr>
<th>Stage (TNM Staging Criteria)</th>
<th>Standard Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IIIB NSCLC</td>
<td>Sequential or concurrent chemotherapy and radiation therapy</td>
</tr>
<tr>
<td></td>
<td>Chemotherapy followed by surgery (for selected patients)</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy alone</td>
</tr>
<tr>
<td>Stage IV NSCLC</td>
<td>Combination chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Combination chemotherapy with bevacizumab or cetuximab</td>
</tr>
<tr>
<td></td>
<td>Epidermal growth factor receptor tyrosine kinase inhibitors (for patients with EGFR mutations)</td>
</tr>
<tr>
<td></td>
<td>Maintenance therapy following first-line chemotherapy</td>
</tr>
<tr>
<td></td>
<td>External-beam radiation therapy (for palliation)</td>
</tr>
<tr>
<td></td>
<td>Endobronchial laser therapy and/or brachytherapy (for obstructing lesions)</td>
</tr>
</tbody>
</table>
Surgical Removal

Lobectomy

Pneumonectomy

Wedge Resection

Segmentectomy

http://www.cts.usc.edu
Surgical Removal

Wedge or Segmental Resection
Removal of one or more lung segment

Lobectomy
Removal of entire lobe of the lung

Pneumonectomy
Removal of entire lung

Note: If a lobectomy was performed, assume that the tumor was more than 2 cm distal to the carina.
<table>
<thead>
<tr>
<th>Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>None; no surgery of primary site; autopsy ONLY</td>
</tr>
<tr>
<td>19</td>
<td>Local tumor destruction or excision, NOS</td>
</tr>
<tr>
<td></td>
<td>Unknown whether a specimen was sent to pathology for surgical events coded 19</td>
</tr>
<tr>
<td>15</td>
<td>Local tumor destruction, NOS</td>
</tr>
<tr>
<td>12</td>
<td>Laser ablation or cryosurgery</td>
</tr>
<tr>
<td>13</td>
<td>Electrocautery; fulguration (includes use of hot forceps for tumor destruction)</td>
</tr>
<tr>
<td></td>
<td>No specimen sent to pathology from surgical events 12-13 and 15</td>
</tr>
<tr>
<td>20</td>
<td>Excision or resection of less than one lobe, NOS</td>
</tr>
<tr>
<td>23</td>
<td>Excision, NOS</td>
</tr>
<tr>
<td>24</td>
<td>Laser excision</td>
</tr>
<tr>
<td>25</td>
<td>Bronchial sleeve resection ONLY</td>
</tr>
<tr>
<td>21</td>
<td>Wedge resection</td>
</tr>
<tr>
<td>22</td>
<td>Segmental resection, including lingulectomy</td>
</tr>
<tr>
<td>30</td>
<td>Resection of [at least one] lobe or bilobectomy, but less than the whole lung (partial pneumonectomy, NOS)</td>
</tr>
<tr>
<td></td>
<td>The lymph node dissection should also be coded under Scope of Regional Lymph Node Surgery</td>
</tr>
<tr>
<td>33</td>
<td>Lobectomy WITH mediastinal lymph node dissection</td>
</tr>
<tr>
<td></td>
<td>The lymph node dissection should also be coded under Scope of Regional Lymph Node Surgery (NAACCR Item #1292) or Scope of Regional Lymph Node Surgery at This Facility (NAACCR Item #672).</td>
</tr>
<tr>
<td>45</td>
<td>Lobe or bilobectomy extended, NOS</td>
</tr>
<tr>
<td>46</td>
<td>WITH chest wall</td>
</tr>
<tr>
<td>47</td>
<td>WITH pericardium</td>
</tr>
<tr>
<td>48</td>
<td>WITH diaphragm</td>
</tr>
</tbody>
</table>
55 Pneumonectomy, NOS
[NOTE: Code 55 includes complete pneumonectomy, Sleeve pneumonectomy, Standard pneumonectomy, Total pneumonectomy, Resection of whole lung]

56 WITH mediastinal lymph node dissection (radical pneumonectomy)
The lymph node dissection should also be coded under Scope of Regional Lymph Node Surgery (NAACCR Item #1292) or Scope of Regional Lymph Node Surgery at This Facility (NAACCR Item #672).

65 Extended pneumonectomy

66 Extended pneumonectomy plus pleura or diaphragm

70 Extended radical pneumonectomy
The lymph node dissection should also be coded under Scope of Regional Lymph Node Surgery (NAACCR Item #1292) or Scope of Regional Lymph Node Surgery at This Facility (NAACCR Item #672).

[NOTE: An extended radical pneumonectomy is a radical pneumonectomy (including removal of mediastinal nodes) and the removal of other tissues or nodes]

80 Resection of lung, NOS

Specimen sent to pathology from surgical events 20–80.

90 Surgery, NOS

99 Unknown if surgery performed; death certificate ONLY
Text Documentation

- Avoid non-standard text
- Keep it simple
- No repetition
- Justify coded items
- FCDS DAM Appendix L

- DEFENSIVE ABSTRACTING
- CYA-Cover your abstract
- Support ALL codes and dates with text - primary site, histology, staging workup, tumor size, nodal status, stage of disease, first course of RX
Text Documentation

• **Date(s)** - include date(s) references - this allows the reviewer to determine event chronology

• **Date(s)** - note when date(s) are estimated [i.e. Date of DX 3/15/2011 (est.)]

• **Location** - include facility/physician/other location where the event occurred (test/study/treatment/other)

• **Abbreviated text** - Be brief but complete - use abbreviations correctly.

• **Text fields** If information is missing from the record, state that it is missing type **not available (NA)**

• **Edit your text documentation**

• **DO NOT REPEAT INFORMATION from section to section**

• **Operative text** - DO not enter the pathology info in the Op TEXT

 Ex 8/26/12 ABC Facility Liver biopsy this **should be part of pathology**

• **Pathology text** -

 Example 8/26/12 ABC facility Liver biopsy metastatic adenocarcinoma
References

* National Cancer Institute
* FCDS Data Acquisition Manual
* American Society of Clinical Oncology
* American Society for Radiation Oncology
* 2013 Cancer Facts and Figures, American Cancer Society
* Collaborative Stage Data Collection System
* 2007 MPH Rules for Solid Tumors
* National Lung Screening Trial (NLST)
Questions

http://media.mlive.com/health_impact/photo/9057757-large.jpg