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This supplement was not included in the main text (Alexandersson 2024) because 
of space and pedagogical constraints. The supplement consists of four parts. The 
first part describes how to create test data using the Python package pseudopeople. 
The remaining three parts describe the fastLink, Splink, and Match*Pro results 
on the test data. There are 670,214 linkable records, with 660,227 actual matches 
(true positives, TP) and 9,987 actual non-matches (true negatives, TN).

S1 Creating Test Data Using the Python Package pseudopeople

pseudopeople is a Python package that generates realistic simulated data about a fictional
United States population, designed for use in testing record linkage (entity resolution) methods.
pseudopeople is currently in a public beta release. There are currently three collections of
pseudopeople input data:

• Sample data (a fictional population of ~10,000 simulants living in Anytown, US, included
with the pseudopeople package)

• Rhode Island (a fictional population of ~1,000,000 simulants living in a simulated state
of Rhode Island)

• United States (a fictional population of ~330,000,000 simulants living throughout a sim-
ulated United States)

The University of Washington (UW) IHME Simulation Science Team led by Abraham Flaxman
is developing pseudopeople. The UW funding for the project comes from the Census Bureau
as a Cooperative Agreement. The Florida Cancer Data System (FCDS)
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first received the Rhode Island input data, version 1.00, as a  23.9 GB zip file on  July 7,  2023. 
See the data access request. The FCDS received version 2.0.0 on September 11, 2023 and the 
current version 2.0.1 on November 15, 2023 as a 61.3 GB zip file. Two large improvements in 
version 2.x are being compatible with pandas 2.x, and having date_of_birth in the correct 
dataset (it moved from taxes_w2_and_1099 to decennial_census). The current version of 
pseudopeople is 1.0, which has duplicates. We used the previous version 0.8.3.

Python Installation

pseudopeople 0.8.3 requires Python 3.8-3.11 to be installed. Most users of the pseudopeople 
Rhode Island data probably need to install Python if Python is not already installed. We 
installed Python 3.11.0 on Windows. We used the RStudio instructions for installing Python 
on a Windows desktop. Specifically, we disabled App execution aliases, and we used pyenv-win. 
pyenv-win is a simple Python version management tool for Windows. The main alternative to 
pyenv-win is the standard Python installer from www.python.org/downloads/, which includes 
the Python launcher for Windows but not version management.

Overall, it is debatable whether pyenv-win or the standard installer is better for installing 
Python on Windows. Users who want to create test data using pseudopeople are likely more 
advanced than users who merely want to use such created test data. For these advanced users, 
Python installation typically should not be an issue. Software for automated reporting such 
as Jupyter or Quarto is optional. We used Quarto 1.3.433. “Add a guide on how to setup 
Python on Windows to work well with Quarto” is Quarto issue 4737 to be resolved in Quarto 
1.5.

Tip to possibly avoid the Python Installation

You do not need to install Python to use the pseudopeople sample data; you can use
Google Colab for that. However, it is tedious to upload large datasets to Google Colab.
The easiest solution for uploading large datasets to Google Colab seems to be to first
sign up for a Google One plan, for example Google One Basic for $1.99 per month which
provides 100 GB of storage. Then, you can access the large datasets in Google Colab by
mounting Google Drive locally.

Reproducibility

Python environments are infamously difficult to manage. For a funny illustration, see XKCD
comic figure 1987. The reason is that a Python virtual environment is a directory on top of
an existing Python installation, which leaves open implementation issues. There are several
virtual environment tools in Python such as: venv, virtualenv, pipenv, poetry, flit, PDM, and
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hatch. In the long term, a Python Enhancement Proposal (PEP) could resolve the issue. A
Draft PEP for a Python Packaging Authority (PyPA) is being discussed.

We used venv for the Python virtual environment tool, because venv requires no installation.
venv is a manual virtual environment tool, and therefore it is best used for smaller projects.
Quarto suggests the directory name env. However, the venv directory is commonly named
.venv (notice the prepended dot) to indicate that it is a special directory for holding a virtual
environment. Here, reproducibility is viewed as a five-step process:

1. Install venv using the command python -m venv .venv
2. Activate venv on Windows using the command . .venv/Scripts/activate
3. Install packages using pip.
4. Save the environment using pip freeze > requirements.txt. To update the environment,

use pip install -r requirements.txt --upgrade.
5. Render the report using Quarto

Tip to create a requirements.txt file

A requirements.txt file generated with pip freeze will include both used and unused
libraries, which is inefficient. A seemingly better way to create a requirements.txt
file is with the package pipreqs. However, to review this was outside the scope of this
supplement considering that pipreqs (v0.4.13) is much less seldom updated than pip
(v23.3.1).

Creating the pseudopeople Rhode Island dataset

Imports should usually be on separate lines, according to PEP 8. Certain modules are conven-
tionally imported with abbreviated names, for example pseudopeple as psp. The primary
pandas (or pd) data structure is a DataFrame, usually abbreviated df. The DataFrame is a
dataset with index (rows, starts at 0 by default) and columns. The first code below imports
the basic required packages, and then it checks the version of pseudopeople.

1 import os 1

2 import warnings
3 import random
4

5 import numpy as np 2

6 import pandas as pd
7 import pseudopeople as psp
8 # !date
9

10 # --- !pip install pseudopeople
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11 warnings.filterwarnings('ignore') 3

12 psp.__version__ 4

1 Import the Python Standard Library
2 Import modules
3 Ignore warnings (otherwise displayed in PDF)
4 The package pseudopeople uses current version 0.8.3 from January 9, 2024.

'0.8.3'

Find the path of the input data, and get the current working directory:

1 # os.chdir('../')
2 # os.listdir('V:/Testing/Monograph_2024/pseudopeople/pseudopeople_simulated_population_ri_2_0_1')
3 ospath = os.path.join("V:", os.sep, "Testing", "Monograph_2024", 1

4 "pseudopeople", "pseudopeople_simulated_population_ri_2_0_1",
5 "pseudopeople_simulated_population_rhode_island_2_0_0")
6 os.getcwd() 2

1 The path of the input data
2 Get the current working directory

'V:\\Testing\\Monograph_2024\\pseudopeople'

The pseudopeople package can generate seven input datasets: US Decennial Census, Ameri-
can Community Survey (ACS), Current Population Survey (CPS), Women, Infants, and Chil-
dren (WIC), Social Security Administration (SSA), Tax Forms: W-2 & 1099, and Tax Form:
1040.

The FCDS 2023 monograph used datasets which were generated before pseudopeople became
public beta. In the developers’ hyper-focus on Census Bureau style data, they no longer have a
single dataset with the variables that the FCDS needs. Since those fields all appear somewhere,
the simplest way to proceed is to merge the variables we need from two simulated datasets.

Below, we created the two datasets Tax Forms: W-2 & 1099 (taxes_w2_and_1099) and US
Decennial Census (decennial_census), and then merged the variables we need.

By design, all pseudopeople variables have 1% “missingness”, and it is defined as “Config key”
followed by “parameter” and “value”, for example {'leave_blank': {'cell_probability':
0.01}}. The documentation currently is confusing because some variables such as
‘unit_number’ defaults to additional missingness as opposed to missingness. The documen-
tation is especially confusing when making composite address variables. In the future, the
documentation likely will include a tutorial about making composite address variables.
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Below, we changed to 20%missingness for ssn (see note 1), read the datasets taxes_w2_and_1099
(note 2) and decennial_census (note 3), and we created a new variable address (note 4) as
the concatenation of variables ‘street_number’ and ‘street_name’ and with 5% missingness
(note 5). The Project US@ Technical Specification (on pages 13-14) states that address instead
SHOULD be parsed into separate fields (variables). See the pseudopeople Configuration
documentation for pseudopeople configuration details.

1 # sample dataset:
2 # df1a = psp.generate_taxes_w2_and_1099()
3

4 # Rhode Island dataset:
5 # print ("Current working dir : %s" % os.getcwd())
6 # df1a = psp.generate_taxes_w2_and_1099(source = os.getcwd())
7

8 config = {
9 'taxes_w2_and_1099': {

10 'column_noise': {
11 'ssn': {'leave_blank': {'cell_probability': 0.20}} 1

12 }
13 },
14 'decennial_census': {
15 'column_noise': {
16 'street_number': {'leave_blank': {'cell_probability': 0.0}},
17 'street_name': {'leave_blank': {'cell_probability': 0.0}},
18 'unit_number': {'leave_blank': {'cell_probability': 0.0}}
19 }
20 }
21 }
22 df1a = psp.generate_taxes_w2_and_1099(source = ospath, 2

23 config=config)
24 print('Tax data contains', len(df1a.columns), 'columns (expect 24)')
25 df1a = df1a.filter(
26 ['simulant_id', 'first_name', 'last_name', 'ssn'])
27

28 # there are multiple rows for simulants who had more than one employer
29 df1a = df1a.groupby('simulant_id').first().reset_index()
30 # df1a
31

32 # def my_concat_address_fields(s):
33 # s = s.filter(['street_number', 'street_name', 'unit_number'])
34 # return ' '.join(s.dropna())
35

36 # df1b = psp.generate_decennial_census()

5

https://oncprojectracking.healthit.gov/wiki/pages/viewpage.action?pageId=180486153
https://pseudopeople.readthedocs.io/en/latest/configuration/index.html


37 df1b = psp.generate_decennial_census(source = ospath, 3

38 config=config)
39 df1b['address'] = (df1b.street_number.fillna('') 4

40 + ' '
41 + df1b.street_name.fillna('')
42 )
43

44 percentage_blank = 5 5

45 num_blank = int(len(df1b) * percentage_blank / 100)
46 blank_indices = np.random.choice(df1b.index, num_blank, replace=False)
47 df1b.loc[blank_indices, 'address'] = np.nan
48

49 # df1b = df1b.replace(np.nan, '') # new: replace nan with ''
50 # df1b['address'] = df1b.apply(my_concat_address_fields, axis=1)
51 # df1b = df1b.replace(r'^\s*$', np.nan, regex=True) # new: put nan back
52 # object mm/dd/yyyy -> datetime yyyy-mm-dd -> string yyyymmdd
53

54 df1b = df1b.filter(
55 ['simulant_id', 'sex', 'address', 'city', 'state', 'zipcode',
56 'street_number', 'street_name', 'unit_number', 'date_of_birth'])
57 # df1b
58 df1 = pd.merge(df1a, df1b)

1 Custom configuration of 20% missing ssn and 0% missing “address”
2 Create the dataframe taxes_w2_and_1099 (not saved) from Rhode Island data
3 Create the dataframe decennial_census (not saved) from Rhode Island data
4 Combine all address columns into a composite column called address
5 Make 5% of cells in the new address column blank

Note the configured 20% missingness noise in ssn and address. The function get_config()
can be used to verify the configurations, for example as below:

1 psp.get_config(config)['taxes_w2_and_1099']['column_noise']['ssn']

{'leave_blank': {'cell_probability': 0.2},
'copy_from_household_member': {'cell_probability': 0.0},
'write_wrong_digits': {'cell_probability': 0.01, 'token_probability': 0.1},
'make_ocr_errors': {'cell_probability': 0.01, 'token_probability': 0.1},
'make_typos': {'cell_probability': 0.01, 'token_probability': 0.1}}
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1 psp.get_config(config)['decennial_census']['column_noise']['street_name']

{'leave_blank': {'cell_probability': 0.0},
'make_phonetic_errors': {'cell_probability': 0.01, 'token_probability': 0.1},
'make_ocr_errors': {'cell_probability': 0.01, 'token_probability': 0.1},
'make_typos': {'cell_probability': 0.01, 'token_probability': 0.1}}

We can now change variables as needed to make them similar to the required FCDS linkage
variables. Whereas NAACCR data items are in mixed case, the FCDS linkage variables use
uppercase. The variable date_of_birth has out-of-range errors in month that would not be
expected in the FCDS database such as month “00” or “14”. Therefore, date_of_birth is
converted to cleaned variable DOB:

1 df1['ssn'] = df1['ssn'].str.replace("-", "") 1

2 df1['first_name'] = df1['first_name'].str.upper() 2

3 df1['last_name'] = df1['last_name'].str.upper() 3

4 df1['address'] = df1['address'].str.upper() 4

5 df1['city'] = df1['city'].str.upper() 5

6 df1['sex'] = np.where(df1['sex'] == "Male", 1, 2) 6

7

8 df1['DOB'] = pd.to_datetime(df1['date_of_birth'], errors='coerce')
9 df1['DOB'] = df1['DOB'].astype('string').str.replace('-', '') 7

10 # print(df1['date_of_birth']) # object (in format mm/dd/yyyy)
11 # print(df1['DOB']) # string (in format yyyymmdd)

1 SSN without dashes as in NACCR data item #2320: Social Security Number
2 First name in uppercase for NACCR data item #2240: First Name
3 Last name in uppercase for NACCR data item #2232: Last Name
4 Address in uppercase for NACCR data item #2350: Street (Number & Name)
5 City in uppercase for NAACCR data item #1810: City
6 Sex coded as in NAACCR data item #220: Sex: 1=Male, 2=Female
7 DOB, converted from date_of_birth, as in NAACCR data item #240: City

For SSN, a common issue is transposition, that is, two adjacent digits being swapped. Because
pseudopeople has no noise for it, we create a new function swap_two() and provide an
example. It is easier to do this code change with SSN without dashes.:

1 def swap_two(x: str) -> str:
2 # Convert the string to a list of characters
3 char_list = list(x)
4
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5 # Ensure that the string has at least two characters to swap
6 if len(char_list) < 2:
7 return x
8

9 # Pick a random position within the valid range for swapping
10 # (positions 0 to len(x) - 2)
11 pos1 = random.choice(range(len(x) - 1))
12

13 # Calculate pos2 while ensuring it stays within the valid range
14 pos2 = min(pos1 + 1, len(x) - 1)
15

16 # Make the swap
17 char_list[pos1], char_list[pos2] = char_list[pos2], char_list[pos1]
18

19 # Join the characters back into a string and return
20 return ''.join(char_list)
21

22 result = swap_two('123457890')
23 print(result)

123547890

Before modifying ssn, we create a backup variable ssn_before_swap. We also set the seeds
for reproducibility, 1% transposition noise for ssn, and we list the first and last rows with
transposed ssn.

Important – Reproducibility issue for sex and address to be fixed in version 1.0.0

pseudopeople 0.8.3 from January 9, 2024, has a randomness bug which is fixed in version
1.0.0 from February 12 (see pseudopeople/pull/383 for details). We re-ran the Quarto file
to test this. Due to the randomness bug, variables sex and address in df1 and sex in
df2 were not reproduced. We did not use pseudopeople 1.0.0 because it introduces new
“row” (duplication) noise and it was released too late for this report. A future update
should use the latest version.

1 df1['ssn_before_swap'] = df1['ssn']
2 np.random.seed(0) # for np.random.choice()
3 random.seed(1) # for random.choice()
4 pct_to_swap = 1 1

5 rows_to_swap = np.random.choice(df1.index, size=int(len(df1)*pct_to_swap/100))
6
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7 df1.loc[rows_to_swap, 'ssn'] = (
8 df1.loc[rows_to_swap, 'ssn']
9 .apply(lambda x: swap_two(x) if pd.notnull(x) else x)

10 )
11 # This simpler code fails with "TypeError: 'NoneType' object is not iterable":
12 # df1.loc[rows_to_swap, 'ssn'] = df1.loc[rows_to_swap, 'ssn'].apply(swap_two)
13

14 df1_ssn = df1.filter(like='ssn').dropna()
15 df1_ssn.loc[(df1['ssn'] != df1['ssn_before_swap'])] 2

1 Swap 1% for ssn
2 .loc prevents warning “Boolean Series key will be reindexed to match DataFrame index”

ssn ssn_before_swap
106 350816314 358016314
111 466611848 466611884
227 726905151 726901551
228 386148586 381648586
739 142245459 142244559
... ... ...
669901 610844020 601844020
669926 261718192 216718192
670128 395487820 394587820
670159 326956686 329656686
670169 493782382 493783282

Below, we do some basic error checking before saving the merged dataset, as CSV and as
Parquet. As specified, the missingness is about 15% for ssn, 5% for address, and 1% for the
other linkage variables (except the 95% for ‘unit_number’, which is discussed above):

1 print('Merged df1 contains', df1.simulant_id.nunique(), 'unique ids, out of', len(df1)) 1

2 df1.shape 2

3 df1.to_csv('df1.csv', index=False) 3

4 df1.to_parquet('df1.parquet', engine = 'pyarrow', compression = 'gzip') 4

1 Confirm that these simulants have unique simulant ids
2 Dimensions of the dataset df1 (with seed=0, default)
3 Save to CSV (~73.6 MB).
4 Save to Parquet (~21.6 MB)

Merged df1 contains 670251 unique ids, out of 670251
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In the dataset generation functions, the parameter seed for randomness defaults to 0 (seed=0).
For the second artificial dataset to be created, df2, we arbitrarily instead set the seed to 1
(seed=1).

1 config2 = {
2 'taxes_w2_and_1099': {
3 'column_noise': {
4 'ssn': {'leave_blank': {'cell_probability': 0.05}} 1

5 }
6 },
7 'decennial_census': {
8 'column_noise': {
9 'street_number': {'leave_blank': {'cell_probability': 0.00}},

10 'street_name': {'leave_blank': {'cell_probability': 0.00}},
11 'unit_number': {'leave_blank': {'cell_probability': 0.00}}
12 }
13 }
14 }
15 df2a = psp.generate_taxes_w2_and_1099(source = ospath, 2

16 config=config2, seed=1)
17

18 print('Tax data contains', len(df2a.columns), 'columns (expect 24)')
19 df2a = df2a.filter(
20 ['simulant_id', 'first_name', 'last_name', 'ssn'])
21

22 # there are multiple rows for simulants who had more than one employer
23 df2a = df2a.groupby('simulant_id').first().reset_index()
24 # df2a
25

26 # def my_concat_address_fields2(s):
27 # s = s.filter(['street_number', 'street_name', 'unit_number'])
28 # return ' '.join(s.dropna(how='all'))
29

30 df2b = psp.generate_decennial_census(source = ospath, 3

31 config=config2, seed=1)
32 df2b['address'] = (df2b.street_number.fillna('') 4

33 + ' '
34 + df2b.street_name.fillna('')
35 )
36 percentage_blank = 1 5

37 num_blank = int(len(df1b) * percentage_blank / 100)
38 blank_indices = np.random.choice(df2b.index, num_blank, replace=False)
39 df2b.loc[blank_indices, 'address'] = np.nan
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40

41 # df2b = df2b.replace(np.nan, '') # new: replace nan with ''
42 # df2b['address'] = df2b.apply(my_concat_address_fields2, axis=1)
43 # df2b = df2b.replace(r'^\s*$', np.nan, regex=True) # new: put nan back
44 df2b = df2b.filter(
45 ['simulant_id', 'sex', 'address', 'city', 'state', 'zipcode',
46 'street_number', 'street_name', 'unit_number', 'date_of_birth'])
47 # df2b
48 df2 = pd.merge(df2a, df2b)

1 Custom configuration of 5% missing ssn and 0% missing “address”
2 Create the dataframe taxes_w2_and_1099 (not saved) from Rhode Island data
3 Create the dataframe decennial_census (not saved) from Rhode Island data
4 Combine all address columns into a composite column called address
5 Make 1% of cells in the new address column blank

As for df1, we can now for df2 change variables as needed to make them similar to the required
FCDS linkage variables. Unlike df1, we do not add transposition errors in ssn:

1 df2['ssn'] = df2['ssn'].str.replace("-", "") 1

2 df2['first_name'] = df2['first_name'].str.upper() 2

3 df2['last_name'] = df2['last_name'].str.upper() 3

4 df2['address'] = df2['address'].str.upper() 4

5 df2['city'] = df2['city'].str.upper() 5

6 df2['sex'] = np.where(df2['sex'] == "Male", 1, 2) 6

7

8 df2['DOB'] = pd.to_datetime(df2['date_of_birth'], errors='coerce')
9 df2['DOB'] = df2['DOB'].astype('string').str.replace('-', '') 7

10 # print(df2['date_of_birth']) # object (in format mm/dd/yyyy)
11 # print(df2['DOB']) # datetime64[ns] (cleaned date in format yyyy-mm-dd)
12 # print(df2['DOB']) # string (in format yyyymmdd)

1 SSN without dashes as in NACCR data item #2320: Social Security Number
2 First name in uppercase for NACCR data item #2240: First Name
3 Last name in uppercase for NACCR data item #2232: Last Name
4 Address in uppercase for NACCR data item #2350: Street (Number & Name)
5 City in uppercase for NAACCR data item #1810: City
6 Sex coded as in NAACCR data item #220: Sex: 1=Male, 2=Female
7 DOB, converted from date_of_birth, as in NAACCR data item #240: City

Below, we do basic error checking before saving the merged dataset, as CSV and as Parquet.
As specified, the missingness is about 5% for ssn, 1% for address, and 1% for the other linkage
variables (except the 94% missingness for ‘unit_number’, which is discussed on page 4):
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1 print('Merged df2 contains', df2.simulant_id.nunique(), 'unique ids, out of', len(df2)) 1

2 df2.shape 2

3 df2.to_csv('df2.csv', index=False) 3

4 df2.to_parquet('df2.parquet', engine = 'pyarrow', compression = 'gzip') 4

1 Confirm that these simulants have unique simulant ids
2 Dimensions of the dataset df2 (with seed=1)
3 Save to CSV (~74.9 MB).
4 Save to Parquet (~22.0 MB)

Merged df2 contains 670214 unique ids, out of 670214

The created datasets (dataframes) df1 and df2 are representative of the Requestor (“finder
file”) and FCDS linkage files, respectively. Note that, typically, the Requestor file has a signif-
icant amount of missing SSN such as the specified 20% whereas for the FCDS the missingness
of SSN is usually around the specified 5%.

Analysis of the Created DataFrames df1 and df2

Missingness of df1 (%, sorted), by variable:

1 df1.isnull().mean().round(6).mul(100).sort_values(
2 ascending=False).to_frame('Missing (%)')

Missing (%)
unit_number 94.7271
ssn 15.2697
ssn_before_swap 15.2697
address 4.9978
street_number 4.1593
DOB 2.6702
date_of_birth 1.0084
city 1.0032
zipcode 0.9949
state 0.9778
last_name 0.7133
first_name 0.7126
simulant_id 0.0000
sex 0.0000
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Missing (%)
street_name 0.0000

List first 5 rows and 5 variables of df1:

1 df1[["simulant_id", "first_name", "last_name", "DOB", "ssn"]].head()

simulant_id first_name last_name DOB ssn
0 1007_1001150 CHARLENE MCMURRAY BATISTA 19791231 449632668
1 1007_1001333 SAVANNAH REED 19991207 349511166
2 1007_1006629 ROSALIE MIRANDA 19880209 023141049
3 1007_1006679 ERNEST WISNESKI 19730524 553530413
4 1007_1009212 SAMUEL WEIS 19900407 048133388

List last 5 variables of df1:

1 df1[["sex", "address", "city", "state", "zipcode"]].head()

sex address city state zipcode
0 2 32583 RAINVILLE AVENUE W GREENWICH RI 02861
1 2 1124 VILLA COURT NORTH CHARLESTOWN RI 02906
2 2 373 EUGENE LN SCITUATE RI 02908
3 1 11091 35TH AVENUE NORTHEAST CUMBERLAND RI 02893
4 1 3493 GOULD STR WARWICK RI 03920

Missingness of df2 (%, sorted), by variable:

1 df2.isnull().mean().round(6).mul(100).sort_values(
2 ascending=False).to_frame('Missing (%)')

Missing (%)
unit_number 94.7285
street_number 4.1596
ssn 3.6166
DOB 2.6508
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Missing (%)
zipcode 1.0148
address 1.0058
city 1.0045
state 0.9930
date_of_birth 0.9860
first_name 0.7502
last_name 0.7114
simulant_id 0.0000
sex 0.0000
street_name 0.0000

List first 5 rows and 5 variables of df2. Python defaults to None for missing (null):

1 df2[["simulant_id", "first_name", "last_name", "DOB", "ssn"]].head()

simulant_id first_name last_name DOB ssn
0 1007_1001150 CHARLENE MCMURRAY BATISTA 19791231 449632668
1 1007_1001333 SAVANNAH REED 19991207 349518166
2 1007_1006629 ROSALIE MIRANDA 19880209 None
3 1007_1006679 ERNEST WISNESKI 19730524 553530413
4 1007_1009196 ANTHONY MORAN 19790122 718020331

List last 5 variables of df2:

1 df2[["sex", "address", "city", "state", "zipcode"]].head()

sex address city state zipcode
0 2 32583 RAINVILLE AVENUE W GREENWICH RI 02861
1 2 1124 VILLA COURT NORTH CHARLESTOWN RI 02906
2 2 373 EUGENE LN SCITUATE RI 02908
3 1 11091 35TH AVENUE NORTHEAST CUMBERLAND RI 02893
4 1 14420 VICTORY BOUL PAWTUCKET RI 02859

Creating a Dataset of Matches and Non-matches

There are 670,251 records in df1:
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1 df1.shape

(670251, 15)

There are 670,214 records in df2. Since df2 is the smaller dataset, this is the maximum
number of records that can be matched:

1 df2.shape

(670214, 14)

The merged dataset is named psp. It has 680,238 records in total. The merge status variable
is named _merge, as does Stata. Here _merge is also the true (actual) match status variable
actual:

1 psp = pd.merge(df1, df2, on='simulant_id', how='outer', indicator=True)
2 psp['actual'] = psp['_merge'].apply(lambda x: 'Match' if x == "both" else 'Non-match')
3 psp.shape

(680238, 30)

We save the dataframe psp. There are 670,214 linkable records, with 660,227 TP and 9,987
TN. There are also 10,024 TN in df1 only but those TN records are not relevant since they
come from the larger dataframe, and therefore are not used in the linkage.

1 psp.to_csv('psp.csv', index=False) 1

2 pd.crosstab(psp._merge, psp.actual, margins=True, margins_name='Total') 2

1 Save dataframe psp to CSV
2 Two-way frequency table to double-check that the variable actual is correct

actual Match Non-match Total
_merge
left_only 0 10024 10024
right_only 0 9987 9987
both 660227 0 660227
Total 660227 20011 680238
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For easier analysis, we drop the non-linkable 10,024 records, keep only 3 variables
(simulant_id, _merge, and actual), and save the dataframe as psp_actual. From now on,
the variable _merge with values both and right_only is merely a placeholder. It should
be replaced with variable predicted with values Match and Non-match, or with something
similar such as variable linked with values Link and Non-link:

1 psp_actual = psp[['simulant_id', '_merge', 'actual']] 1

2 psp_actual = psp_actual.loc[psp_actual["_merge"] != 'left_only'] 2

3 psp_actual.to_csv('psp_actual.csv', index=False) 3

4 pd.crosstab(psp_actual['_merge'], psp_actual.actual, margins=True,
5 margins_name="Total") 4

1 Only keep these three variables
2 Only keep these 670,214 matchable observations
3 Save dataframe psp_actual to CSV for easier analysis
4 Two-way frequency table of matches and non-matches. To be updated with predicted

(linked) results.

actual Match Non-match Total
_merge
right_only 0 9987 9987
both 660227 0 660227
Total 660227 9987 670214

The remaining supplements will provide the predicted (linked) results for fastLink, Splink, 
and Match*Pro.
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S2 fastLink Results on the pseudopeople Test Data

The first part of the supplement, S1, described how the FCDS created the test data using
the Python package pseudopeople. This second part of the supplement, S2, describes the
fastLink results on the pseudopeople test data. The structure of S2 is the same as the
FCDS record linkage template using fastLink (unpublished 2022 FCDS Monograph) but
with four important improvements:

1. The importance of Social Security Number (SSN) is now tested. fastLink has been
updated from version 0.6 to 0.6.1. The new version has the Damerau-Levenshtein edit
distance measure (stringdist.method = "dl") which allows for adjacent transpositions
(swap two numbers next to each other). It is especially useful for identifying a partial
match on SSN because 2 digits off is usually an error unless it is an adjacent transposition.

2. The reporting tool R Markdown has been upgraded to Quarto. An example of a Quarto
feature is code annotation.

3. The package renv for a reproducible environment has been upgraded from version 0.15.2
to version 1.0.3. The 1.0.0 release recognized that renv is a mature product that has
evolved through 30 releases in the last 4 years.

4. The pseudopeople datasets have been updated from a private development (“alpha”)
version by Abraham Flaxman to public test (“beta”) version 0.8.3. It uses Python
package pandas version 2.1.2.

Reproducibility

To create a new project in the RStudio IDE, use the Create Project command (available on 
the Projects menu and on the global toolbar). The renv::init() command converts a project 
to use renv. The R output is:

- Project 'V:/Testing/Monograph_2024/fastLink_v06' loaded. [renv 1.0.3].

The renv::snapshot() command saves any changes you make. Use 
renv::restore() to restore the project. The files to share with collaborators are 
renv.lock, .Rprofile, renv/settings.json and renv/activate.R; see renv.

Source Data

S1 created two datasets of simulated “Rhode Island” populations: df1 with 670,251 observa-
tions (using seed 0), and df2 with 670,214 observations (using seed 1). Both datasets exist as 
comma-separated values (CSV) files and Parquet files. Th e R script fltest_0input.r loads 
the CSV datasets and the code for loading the Parquet files are commented out:
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## Load the source data
# input files: df1, df2
# output files: dfA, dfB
source("fltest_0input.r")

Step 1: Attribute Alignment

We use the R script fltest_1align.r for cleaning the data:

## Align the attributes (clean the source data)
# input files: dfA, dfB
# output files: (dfA2, dfB2) -- not saved
source("fltest_1align.r")

Table 1 shows the dimensions of the datasets. The data for Table 1 is in the file
fltest_table1.r, and the code for displaying Table 1 is in the Quarto Markdown version of
this report, that is, in fltest.qmd.

Table 1: The dimensions of the datasets

Dataset Feature Source Cleaned
dfA Number of observations 670251 670251
dfA Number of variables 15 17
dfA Percent joint missing-1 NA 9.75%
dfA Percent joint missing-2 NA 18.63%
dfB Number of observations 670214 670214
dfB Number of variables 14 16
dfB Percent joint missing-1 NA 6.01%
dfB Percent joint missing-2 NA 7.54%

Note: “Joint missing-1” refers to the combination first_name, last_name, sex, dob, zip and 
address. “Joint missing-2” refers to the combination first_name, last_name, sex, dob, and 
ssn.

Markdown tables such as Table 1 are much less configurable than kable tables such as Table 
2. For example, Table 2 has a formatted Note and striped rows whereas Table 1 does not. The
Github Quarto issue is #6945.

Table 2 shows the missingness of the cleaned datasets, by variable.
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Table 2: The missingness of the cleaned datasets, by variable

dfA dfB
variable # Missing % Missing # Missing % Missing
req_pid 0 0.00 NA NA
fcds_pid NA NA 0 0.00
ssn 102,345 15.27 24,239 3.62
address 33,498 5.00 6,741 1.01
zip 6,668 0.99 6,801 1.01
dob 17,897 2.67 17,766 2.65
sex 0 0.00 0 0.00
first_name 4,776 0.71 5,028 0.75
last_name 4,852 0.72 4,855 0.72
fname_dm 0 0.00 0 0.00
lname_dm 0 0.00 0 0.00

Note:
The dfA dataset (File 1) has 670,251 patient observations.
The dfB dataset (File 2) has 670,214 patient observations.
The data are simulated (artificial).

Step 2: Blocking

The blocking is done with exact matching sex (2 values) and k-means clustering on 
first_name (3 clusters), with a total of 6 blocks. For consistency with the FCDS template, 
we use the R script fltest_2blocking.r for blocking the data:

## Block the aligned data
# input files: dfA2, dfB2
# output files: (block_out object) -- not saved
source("fltest_2blocking.r")

Step 3: Record linkage

Links are declared matches, which are not necessarily true matches. The SSN variable ssn is
missing 15.3% in the dataset dfA and 3.6% in the dataset dfB. The record linkage was done
using the R script fltest_3linkage.r:
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## Create the patient matches (before manual review)
# warning messages are suppressed with `warning = FALSE`
# input files: block_out (object), dfA2, dfB2
# output files: (flobj_out object, matches) -- not saved
source("fltest_3linkage.r")

Table 3 provides frequencies of linkage pattern (variable pattern) by posterior matching prob-
ability (variable posterior):

Table 3: Frequencies of linkage pattern by posterior probability

Pattern Posterior
0.95 0.96 0.97 0.98 0.99 1 Sum

0 2 2 2 2 0 0 0 0 0 5,305 5,305
0 NA 2 2 2 0 0 0 48 81 0 129
1 0 0 2 2 0 0 0 3 8 0 11
1 0 2 0 2 0 0 0 0 0 20 20
1 0 2 2 0 0 0 0 0 0 16 16
1 0 2 2 2 0 0 0 0 0 342 342
1 0 NA 2 2 0 0 0 0 0 23 23
1 2 0 0 2 0 0 0 0 15 0 15
1 2 0 2 2 0 0 0 0 0 439 439
1 2 2 0 0 0 0 0 0 0 18 18
1 2 2 0 2 0 0 0 0 0 405 405
1 2 2 2 0 0 0 0 0 0 628 628
1 2 2 2 2 0 0 0 0 0 12,303 12,303
1 2 NA 0 2 0 0 0 0 0 27 27
1 2 NA 2 0 0 0 0 0 9 18 27
1 2 NA 2 2 0 0 0 0 0 741 741
1 NA 0 2 2 0 0 0 0 0 6 6
1 NA 2 0 0 0 0 0 0 2 0 2
1 NA 2 0 2 0 0 0 0 0 12 12
1 NA 2 2 0 0 0 0 0 0 17 17
1 NA 2 2 2 0 0 0 0 0 271 271
1 NA NA 2 2 0 0 0 0 0 18 18
2 0 0 0 2 0 1 0 0 0 0 1
2 0 0 2 2 0 0 0 0 0 453 453
2 0 2 0 0 0 0 0 0 0 21 21
2 0 2 0 2 0 0 0 0 0 396 396
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2 0 2 2 0 0 0 0 0 0 508 508
2 0 2 2 2 0 0 0 0 0 11,459 11,459
2 0 NA 0 2 0 0 0 0 0 18 18
2 0 NA 2 0 0 10 19 0 4 0 33
2 0 NA 2 2 0 0 0 0 0 654 654
2 2 0 0 2 0 0 0 0 0 507 507
2 2 0 2 0 0 0 0 0 0 663 663
2 2 0 2 2 0 0 0 0 0 14,345 14,345
2 2 2 0 0 0 0 0 0 0 630 630
2 2 2 0 2 0 0 0 0 0 13,154 13,154
2 2 2 2 0 0 0 0 0 0 19,131 19,131
2 2 2 2 2 0 0 0 0 0 389,545 389,545
2 2 NA 0 0 0 0 5 26 7 0 38
2 2 NA 0 2 0 0 0 0 0 752 752
2 2 NA 2 0 0 0 0 0 0 1,124 1,124
2 2 NA 2 2 0 0 0 0 0 22,350 22,350
2 NA 0 0 2 0 0 0 0 0 5 5
2 NA 0 2 0 0 0 3 8 2 0 13
2 NA 0 2 2 0 0 0 0 0 297 297
2 NA 2 0 0 0 0 0 0 0 10 10
2 NA 2 0 2 0 0 0 0 0 245 245
2 NA 2 2 0 0 0 0 0 0 392 392
2 NA 2 2 2 0 0 0 0 0 8,183 8,183
2 NA NA 0 2 0 0 0 0 0 17 17
2 NA NA 2 0 0 0 0 0 0 15 15
2 NA NA 2 2 0 0 0 0 0 495 495
NA 0 2 2 2 0 0 0 0 2,210 382 2,592
NA 2 2 0 2 0 0 0 0 1,497 1,536 3,033
NA 2 2 2 0 837 761 0 0 0 0 1,598
NA 2 2 2 2 0 0 0 0 0 89,306 89,306
NA NA 2 2 2 0 0 0 0 0 1,868 1,868
Sum 837 772 27 85 3,835 599,070 604,626

Note:
The pattern variable is a concatenation of the variables ssn, zip,
dob, fname_dm, and lname_dm. The pattern values are 2 =
Match, 1 = Partial Match, 0 = No Match, and NA = Missing.

Table 4 below, from the confusion() function, shows the linkage results before the clerical 
review as the confusion table. There are 604,626 links. The “Max Number of Obs to be 
Matched” (665,186) is less than the observations in the smaller dataset dfB (670,214) which
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is difficult to explain. The confusion() function does not have user documentation. For a
developer comment, see fastLink issue #22. Another issue is that the duplicate row ids are
removed before checking for them again in dfB which can result in duplicates in dfB despite
deduplication, see issue #78.

Table 4: Confusion table from fastLink

’True’ Matches ’True’ Non-Matches
Declared Matches 604,514.91 111.09
Declared Non-Matches 55.15 60,504.85

Note:
The ’True’ Matches are only fastLink estimates

results
Max Number of Obs to be Matched 665,186.00
Sensitivity (%) 99.99
Specificity (%) 99.82
Positive Predicted Value (%) 99.98
Negative Predicted Value (%) 99.91
False Positive Rate (%) 0.18
False Negative Rate (%) 0.01
Correctly Classified (%) 99.97
F1 Score (%) 99.99

Step 4: Canonicalization

The fourth and last record linkage step step is known as canonicalization. By default, fastLink
deduplicates the matches into representative or “canonical” records. There are several unsu-
pervised methods of canonicalization (Kaplan, Betancourt, and Steorts 2022). fastLink has
two deduplication algorithms:

• a faster but less accurate “greedy” algorithm (default) which iteratively selects the
maximum match probability for a given observation. The fastLink argument is
dedupe.matches.

• a slower but more accurate “linear programming” algorithm (recommended but not de-
fault) which uses Winkler’s solution. The fastLink argument is linprog.dedupe.

The R script fltest_4canon.r is available but not used for the canonicalization. For now, it
is only placeholder code:
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## Create the results data for the patient links (after manual review)
# input files: matches, dfA2, dfB2
# intermediate files: (possibles, reviewed, fltest_links) -- not used
# output files: fltest, fltest.csv (CSV version)
# source("fltest_4canon.r")

The largest advantage with using pseudopeople source data is that we know the actual true
matches in the dataset psp_actual, as opposed to the estimated true matches or “true”
matches or “links” in the dataset matches. It is a true match when the simulant_id in
both linkage files are the same. It is a true non-match when the simulant_id in both
linkage files are different. There are a few different ways to show this such as using merge(),
statar::join() or tidylog::full_join() on the datasets psp_actual and matches. We
used statar::join() (not shown) because it easily creates a new variable merge. From tab-
ulating this new variable merge, we find that there are 10,024 non-matches only in dfA, 9,987
non-matches only in dfB, 660,227 matches and 670,214 rows in total. There are 41 FP, which
are links with different req_pid and fcds_pid and where simulant_id are in both dfA and
dfB. The count does not include possibly another 6 FP where simulant_id are in dfA only.

The most important linkage quality measure to the FCDS is FP. The linkage used the default
fastLink method for de-duping matches. Table 5 below lists the 41 FP.

Table 5: List values of false positives (FP)

req_pid fcds_pid posterior pattern fp
1235_670643 1235_670644 1.00 2 0 0 2 2 1
1452_189659 1452_189662 1.00 2 2 2 0 2 1
1667_8269 1667_8267 1.00 2 2 0 0 2 1
1990_909799 1990_909801 1.00 2 2 0 0 2 1
2476_922610 2476_922611 1.00 2 2 0 0 2 1
2721_453341 2721_453339 1.00 NA 2 2 0 2 1
3298_428060 3298_428061 1.00 2 2 2 0 2 1
3481_381375 3481_381376 1.00 2 2 0 0 2 1
3481_615693 3481_615692 1.00 NA 2 2 0 2 1
3568_552537 3568_552538 1.00 2 2 2 0 2 1
40_28682 40_28686 1.00 2 0 NA 0 2 1
4400_278663 4400_278664 1.00 2 2 2 0 2 1
4637_233654 4637_233653 1.00 2 2 2 0 2 1
5072_872383 5072_872384 1.00 2 2 0 0 2 1
5475_550880 9247_36231 0.99 NA 0 2 2 2 1
5475_871168 5475_871171 0.99 NA 2 2 0 2 1
5619_28621 5619_28622 1.00 2 2 0 0 2 1
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5670_764676 5670_764675 1.00 2 2 0 0 2 1
5812_445161 5812_445160 1.00 2 2 0 0 2 1
6487_3455 6487_3457 1.00 2 2 0 0 2 1
6545_493049 6545_493052 1.00 2 2 0 0 2 1
7264_109877 1935_698604 0.95 NA 2 2 2 0 1
7511_287109 7511_287111 1.00 2 2 0 0 2 1
7511_287111 7511_287109 1.00 2 2 0 0 2 1
7551_889857 7551_889856 1.00 2 2 0 0 2 1
7653_202950 7653_202948 1.00 2 2 0 0 2 1
781_175620 781_175619 0.99 NA 2 2 0 2 1
7985_384764 7985_384760 1.00 2 2 0 0 2 1
8129_172655 8129_172652 0.99 NA 2 2 0 2 1
8156_444517 8156_444518 1.00 2 2 2 0 2 1
8527_645266 8527_645264 1.00 2 2 0 0 2 1
8980_800863 8980_800860 1.00 2 2 0 0 2 1
9159_370494 9159_370492 1.00 2 2 0 0 2 1
9187_708655 9187_708653 1.00 2 2 2 0 2 1
9247_556126 9247_556127 1.00 2 2 0 0 2 1
9284_633649 9284_633647 1.00 2 2 0 0 2 1
9859_722895 9859_722894 1.00 2 2 0 0 2 1
9871_753609 9871_753608 1.00 NA 2 2 2 2 1
9871_924620 9871_924619 1.00 2 2 2 0 2 1
9888_254122 9888_254123 1.00 2 2 0 0 2 1
9888_254123 9888_254122 1.00 2 2 0 0 2 1
Total 40.91 41

Note:
A False Positive (FP) is defined as a mis-match of the
simulant_id variables, here named req_pid for dfA and
fcds_pid for dfB

The analysis dataset mylinks from the linkage has 604,626 links on these 4 variables: req_pid,
fcds_pid, posterior and pattern. The analysis dataset analysis (not shown) has 670,214
observations (on the 4 variables in mylinks plus 4 more analysis variables).

mylinks <- read_csv("fltest.csv", col_types = cols())
dim(mylinks)

[1] 604626 4
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The merging of psp_actual (with the actual match status) and of matches from fastLink
resulted in the components for the confusion table, see Table 6 below. Table 6 is hard coded,
so it could be improved.

Table 6: Confusion Table using fastLink

True Matches True Non-Matches Total
Links 604,579 TP 41 FP 604,620
Non-Links 55,648 FN 9,946 TN 65,594
Total 660,227 9,987 670,214

Note: There are 41 FP (possibly because of de-duplication). We excluded the 6 of 604,626
links where simulant_id are in dfA only. Therefore, the table only displays 604,620 links.

Sensitivity Analysis

Compared with Table 3, Table 7 below replaces variables ssn, fname_dm, and lname_dm with
address, first_name, and last_name. Also, it replaces Damerau-Levenshtein partial match
with exact match, and match threshold 0.95 with 0.98, and rounding precision 0.01 with 0.005.
Table 7 displays 610,354 links in total, and 604,182 links having match probability 1, and
600,048 links with match probability of at least 0.995, when rounded to 0.005. For rounding
off a 5, the standard is “go to the even digit”. For example, 0.998 is rounded to 1. The linkage
run time was approximately 1 hour (60 minutes):

Table 7: Frequencies of linkage pattern by posterior probability (linkage 2)

Pattern Posterior
0.98 0.985 0.99 0.995 1 Sum

0 2 2 0 2 0 0 0 1,053 0 1,053
0 2 2 2 2 0 0 0 0 22,939 22,939
0 NA 2 2 2 0 0 0 145 319 464
2 0 2 0 2 0 0 0 0 610 610
2 0 2 2 0 0 0 0 232 75 307
2 0 2 2 2 0 0 0 0 12,668 12,668
2 0 2 2 NA 0 0 0 84 90 174
2 0 NA 2 2 0 127 137 94 0 358
2 2 0 0 2 0 0 0 457 801 1,258
2 2 0 2 2 0 0 0 0 15,639 15,639
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2 2 0 2 NA 0 0 102 45 0 147
2 2 2 0 0 0 0 0 0 981 981
2 2 2 0 2 0 0 0 0 20,853 20,853
2 2 2 0 NA 0 0 0 0 275 275
2 2 2 2 0 0 0 0 0 20,739 20,739
2 2 2 2 2 0 0 0 0 432,044 432,044
2 2 2 2 NA 0 0 0 0 6,575 6,575
2 2 NA 0 2 0 0 0 0 1,321 1,321
2 2 NA 2 0 0 0 439 177 0 616
2 2 NA 2 2 0 0 0 0 24,800 24,800
2 2 NA 2 NA 0 0 171 68 127 366
2 NA 0 2 2 0 0 0 0 317 317
2 NA 2 0 0 0 0 11 8 0 19
2 NA 2 0 2 0 0 0 0 403 403
2 NA 2 0 NA 0 0 0 0 7 7
2 NA 2 2 0 0 0 0 0 408 408
2 NA 2 2 2 0 0 0 0 9,154 9,154
2 NA 2 2 NA 0 0 0 0 164 164
2 NA NA 0 2 14 3 3 0 0 20
2 NA NA 2 2 0 0 0 0 559 559
NA 0 2 2 2 0 0 0 562 274 836
NA 2 2 0 2 0 0 0 0 1,415 1,415
NA 2 2 2 0 0 0 0 588 704 1,292
NA 2 2 2 2 0 0 0 0 28,904 28,904
NA 2 2 2 NA 0 0 0 0 436 436
NA 2 NA 2 2 0 505 526 602 0 1,633
NA NA 2 0 2 0 0 0 19 7 26
NA NA 2 2 2 0 0 0 0 574 574
Sum 14 635 1,389 4,134 604,182 610,354

Note:
The pattern variable is a concatenation of the variables ad-
dress, zip, dob, first_name, and last_name. There is no vari-
able ssn. The threshold is 0.98. The values are rounded to
0.005. The pattern values are 2 = Match, 1 = Partial Match,
0 = No Match, and NA = Missing.

Table 8 below provides the estimated confusion table for the new linkage results. There are
610,354 estimated links (that is, 610,304.9 TP + 49.1 FP).
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Table 8: Confusion table from fastLink

’True’ Matches ’True’ Non-Matches
Declared Matches 610,304.9 49.1
Declared Non-Matches 49.3 54,782.7

Note:
The ’True’ Matches are only fastLink estimates

results
Max Number of Obs to be Matched 665,186.00
Sensitivity (%) 99.99
Specificity (%) 99.91
Positive Predicted Value (%) 99.99
Negative Predicted Value (%) 99.91
False Positive Rate (%) 0.09
False Negative Rate (%) 0.01
Correctly Classified (%) 99.99
F1 Score (%) 99.99

Table 9 below shows the confusion table with 599 FP.

The change from 41 FP to 599 FP is most likely mostly due to replacing the person-identifier
ssn with the household identifier address. To emphasize this, Table 9 adds the title text
“without ssn”:

Table 9: Confusion Table using fastLink without ssn

True Matches True Non-Matches Total
Links 609,594 TP 599 FP 610,193
Non-Links 50,633 FN 9,388 TN 60,021
Total 660,227 9,987 670,214

Note: There are 599 FP (possibly because of de-duplication). We excluded the 161 of 610,354 
links where simulant_id are in dfA only. Therefore, the table only displays 610,193 links.

Linkage Performance

Record linkage is performed with two different objectives: matching of entire databases 
(“matchability”) and identification of individuals (“identifiability”) (Ansolabehere and Hersh
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2017). Usually, the record linkage process is the same for both objectives. In practice, matcha-
bility focuses on increasing the total number of declared matches (links) whereas identifiability
focuses on reducing the wrong matches (FP). The focus at the FCDS is on having 0 FP.

The fastLink record linkage was a gradual process. These were the results in terms of links
and FP:

• Estimated 111 FP if using ssn (linkage 1 with 604,626 links), see Table 4.

• Actual 41 FP if using ssn (linkage 1 with 604,620 links), see Tables 5 and 6.

• Estimated 49 FP if not using ssn (linkage 2 with 610,354 links), see Table 8.

• Actual 599 FP if not using ssn (linkage 2 with 610,193 links), see Table 9.

It is debatable whether to count links that are in dfA only as FP because the actual match 
status is “Missing” rather than “Non-match”. To give fastLink the benefit of doubt, we do 
not count those 6 links in linkage 1 and those 161 links in linkage 2 in the confusion tables 
with the actual match status; we refer to “matched links” instead of to only “links”. Therefore, 
the best result of fastLink in terms of FP is 41 FP (not 47 FP) from linkage 1 which used 
ssn.

The run time of the first linkage was approximately 4 hours (240 minutes). The run time of the 
second linkage was approximately 1 hour (60 minutes). The difference in run time is primarily 
because of the change from partial matching (of ssn) to exact matching (on address). Note 
that these are the first run times of each linkage. Subsequent run times for report editing are 
much faster thanks to cached results.

The results so far in terms of FP have counted all links. The results are worse when “Uncertain” 
or “Possible” record pairs are considered. These are links with match probability 0.95-0.94 in 
the first l inkage, and l inks with match probability 0.98-0.997 in the second linkage.

Linkage 1 had 41 FP. The test results with linkage patterns in Table 3 for linkage 1 (with 
rounding to 0.01) indicate that “many” links with match probability 0.95-0.97 (that is, <0.98) 
are likely FP. Linkage 2 had 599 FP. The equivalent Table 7 for linkage 2 (with rounding to 
0.005) indicate that “many” links with match probability 0.98-0.995 (that is, <1) are likely 
FP. These test results are similar to the published results from the developers.

Unfortunately, FP can be difficult to resolve e fficiently. A known problem is  that first_name 
and sex correlate. A limited review of the 41 FP showed that most FP are because of no 
match on on both first_name and sex. We addressed this in Tables 10 and 11 below.

Table 10 shows an improved confusion table with 19 FP when ssn is available.

The change from 41 FP to 19 FP is because of requiring a match on first_name and sex:

Table 10: Confusion Table using fastLink with ssn. Match on first_name and sex.
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True Matches True Non-Matches Total
Links 571,568 TP 19 FP 571,587
Non-Links 88,659 FN 9,968 TN 98,627
Total 660,227 9,987 670,214

Note: There are 19 FP (possibly because of de-duplication). We excluded the 33,033 of 604,620
links where there is no match on first_name, sex and dob. Therefore, the table only displays
571,587 links.

Table 11 shows an improved confusion table with 109 FP when ssn is unavailable.

The change from 599 FP to 109 FP is because of requiring a match on first_name, sex, and
dob. If we require a match on first_name and sex but not on dob, then there are 226 FP.
We prefer to be conservative, to have 109 FP rather than 226 FP before the clerical review:

Table 11: Confusion Table using fastLink without ssn. Match on first_name, sex and dob.

True Matches True Non-Matches Total
Links 532,650 TP 109 FP 532,759
Non-Links 127,577 FN 9,878 TN 137,455
Total 660,227 9,987 670,214

Note: There are 109 FP (possibly because of de-duplication). We excluded the 77,434 of 
610,193 links where there is no match on first_name, sex and dob. Therefore, the table only 
displays 532,759 links.

Recommendation

Based on the fastLink test results, the recommendation is to use the match threshold 0.98, 
and the rounding 0.005 as in the second linkage – or maybe even the higher match threshold 
0.99. This assumes that fastLink is used. Part three of the supplement, S3, will describe 
the Splink results on the pseudopeople test data. The last part 4, S4, will describe the 
Match*Pro results on the test data.

Warning – Need to Update fastLink

• A new major release of fastLink with improved blocking and Active Learning has
been promised. The FCDS does not know when that will happen. There is a need
to update fastLink.
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S3 Splink Results on the pseudopeople Test
Data

The first p art o f t he s upplement, S 1, d escribed h ow t he FCDS c reated t he t est d ata using 
the Python package pseudopeople. The second part of the supplement, S2, described the 
fastLink results on the pseudopeople test data. The structure of S2 was the same as the 
FCDS record linkage template using fastLink (unpublished 2022 FCDS Monograph) but with 
three important improvements, as discussed in S2. This third part of the supplement, S3, 
describes the Splink results on the pseudopeople test data.

� Tip to Try pseudopeople 1.0.0

The data are from pseudopeople 0.8.3, see S1. The current pseudopeoole 1.0.0 data
will have some duplicates.

Reproducibility

As described in S2, we used venv for the Python virtual environment tool, because venv
requires no installation.1

Source Data

1 # Step 0: Input data
2 import os 1

3 import warnings
4

5 import numpy as np 2

1The file monograph_2024_supplement3.qmd reproduces the report. The file
monograph_2024_supplement3_nossn.qmd produced the data for Table 2, confusion table without
ssn.
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6 import pandas as pd
7 import time #
8 import altair as alt
9

10 import splink
11 splink.__version__ 3

12

13 # import pseudopeople as psp
14 # !date
15

16 # --- !pip install pseudopeople
17 # psp.__version__ #
18 warnings.filterwarnings('ignore') 4

1 Import the Python Standard Library
2 Import modules
3 The current Splink version is 3.9.14.
4 Ignore warnings (otherwise displayed in PDF)

'3.9.14'

Despite the efforts of configuring venv for pseudopeople in  S1, there were two more Quarto 
configuration i ssues: how to remove a  Jupyter kernel and how to set a  Windows environment 
variable for QUARTO_PYTHON. A non-Python user would not be able to resolve those 
configuration i ssues. splink requires basic Python user skills.

The most common Python package for data analysis is pandas (abbreviated pd). Here we read 
the three CSV datasets from pseudopeople into pandas:

1 # sample dataset:
2 # df1a = psp.generate_taxes_w2_and_1099()
3

4 # Rhode Island dataset:
5 # print ("Current working dir : %s" % os.getcwd())
6 # df1a = psp.generate_taxes_w2_and_1099(source = os.getcwd())
7

8 df1 = pd.read_csv("../pseudopeople/df1.csv", dtype={'DOB': str, 'ssn': str})
9 df2 = pd.read_csv("../pseudopeople/df2.csv", dtype={'DOB': str, 'ssn': str})

10 df_labels = pd.read_csv("../pseudopeople/psp_actual.csv")
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Step 1: Attribute Alignment

As an example of attribute alignment, we rename two variables and display the last 5 records. 
By default, Python only displays the last output. Here, it means that Python only displays 
the last 5 records from df2 (not from df1). NaN ("Not a Number") is missing, similar to None:

1 # Step 1: Attribute alignment
2 df1.rename(columns={"zipcode": "zip", "date_of_birth": "dob"}, inplace=True) 1

3 df2.rename(columns={"zipcode": "zip", "date_of_birth": "dob"}, inplace=True)
4 df_labels.loc[df_labels.actual=="Match", 'clerical_match_score'] =1.0
5 df_labels.loc[df_labels.actual=="Non-match", 'clerical_match_score'] =0.0
6 df_labels = df_labels.filter(['simulant_id', 'clerical_match_score'])
7 df_labels.head()
8 df_labels.tail()
9 df1.head()

10 df1.tail()
11 df2.head()
12 df2.tail()

simulant_id clerical_match_score
0 1007_1001150 1.0
1 1007_1001333 1.0
2 1007_1006629 1.0
3 1007_1006679 1.0
4 1007_1009196 0.0

simulant_id clerical_match_score
670209 99_978308 1.0
670210 99_979738 1.0
670211 99_981197 1.0
670212 99_987024 1.0
670213 99_988029 1.0

simulant_id first_name last_name ssn sex address city state zip street_number street_name unit_number dob DOB ssn_before_swap
0 1007_1001150 CHARLENE MCMURRAY BATISTA 449632668 2 32583 RAINVILLE AVENUE W GREENWICH RI 02861 32583 rainville avenue NaN 12/31/1979 19791231 449632668
1 1007_1001333 SAVANNAH REED 349511166 2 1124 VILLA COURT NORTH CHARLESTOWN RI 02906 1124 villa court north NaN 12/07/1999 19991207 349511166
2 1007_1006629 ROSALIE MIRANDA 023141049 2 373 EUGENE LN SCITUATE RI 02908 373 eugene ln NaN 02/09/1988 19880209 023141049
3 1007_1006679 ERNEST WISNESKI 553530413 1 11091 35TH AVENUE 

NORTHEAST
CUMBERLAND RI 02893 11091 35th avenue northeast apartment 1 05/24/1973 19730524 553530413
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simulant_id first_name last_name ssn sex address city state zip street_number street_name unit_number dob DOB ssn_before_swap
4 1007_1009212 SAMUEL WEIS 048133388 1 3493 GOULD STR WARWICK RI 03920 3493 gould str NaN 04/07/1990 19900407 048133388

simulant_id first_name last_name ssn sex address city state zip street_number street_name unit_number dob DOB ssn_before_swap
670246 99_978308 JAVIER GUYER 746654363 1 6517 PEACEPIPE TRL CHARLESTOWN RI 02914 6517 peacepipe trl NaN 09/17/2000 20000917 746654363
670247 99_979738 KATHLEEN TONN 483701187 2 1010 CAT HOLLOW CLUB DRIVE PAWTUCKET RI 02920 1010 cat hollow club drive NaN 10/29/1956 19561029 483701187
670248 99_981197 DEREK MORENO-AVENDANO NaN 1 10083 GARRISON LANE WARWICK RI 02842 10083 garrison lane NaN 05/17/1974 19740517 NaN
670249 99_987024 JUSTIN EVANS 308590487 1 18 CLEVELAND AVE NW PROVIDENCE RI 02888 18 cleveland ave nw NaN 05/22/198S NaN 308590487
670250 99_988029 CHRISTOPHER CAGE 240266261 1 3327 N PALM AVE WEST WARWICK RI 02859 3327 n palm ave NaN 09/13/1985 19850913 240266261

simulant_id first_name last_name ssn sex address city state zip street_number street_name unit_number dob DOB
0 1007_1001150 CHARLENE MCMURRAY BATISTA 449632668 2 32583 RAINVILLE AVENUE W GREENWICH RI 02861 32583 rainville avenue NaN 12/31/1979 19791231
1 1007_1001333 SAVANNAH REED 349518166 2 1124 VILLA COURT NORTH CHARLESTOWN RI 02906 1124 villa court north NaN 12/07/1999 19991207
2 1007_1006629 ROSALIE MIRANDA NaN 2 373 EUGENE LN SCITUATE RI 02908 373 eugene ln NaN 02/09/1988 19880209
3 1007_1006679 ERNEST WISNESKI 553530413 1 11091 35TH AVENUE NORTHEAST CUMBERLAND RI 02893 11091 35th avenue northeast apartment 1 05/24/1973 19730524
4 1007_1009196 ANTHONY MORAN 718020331 1 14420 VICTORY BOUL PAWTUCKET RI 02859 14420 victory boul NaN 01/22/1979 19790122

simulant_id first_name last_name ssn sex address city state zip street_number street_name unit_number dob DOB
670209 99_978308 JAVIER GUYER 746654363 1 6517 PEACEPIPE TRL CHARLESTOWN RI 02914 6517 peacepipe trl NaN 09/17/2000 20000917
670210 99_979738 KATHLEEN TONN 483701187 2 1010 CAT HOLLOW CLUB DRIVE PAWTUCKET RI 02920 1010 cat hollow club drive NaN 10/29/1956 19561029
670211 99_981197 DEREK MORENO-AVENDANO 032571364 1 10083 GARRISON LANE WARWICK RI 02842 10083 garrison lane NaN 05/17/1974 19740517
670212 99_987024 JUSTIN EVANS 308590487 1 18 CLEVELAND AVE NW PROVIDENCE RI NaN 18 cleveland ave nw NaN 05/22/1985 19850522
670213 99_988029 CHRISTOPHER CAGE 240Z66261 1 3327 N PALM AVE WEST WARWICK RI 02859 3327 n palm ave NaN 09/13/1985 19850913

All linker input frames must have the same set of columns. We can use df.drop() to drop
the unique column ssn_before_swap. We also do not need the column unit_number and dob
because we know from supplement 1 that unit_number has about 95% missing and that DOB is
the cleaned variable for date of birth. However, we prefer to use .loc[] to select the columns
we want. The code should focus on the columns we want to use, not on the columns we want
to drop. We rename DOB to dob to be consistent with lowercase but ideally this should be done
in Supplement 1:

1 df1 = df1.loc[:,['simulant_id', 'first_name', 'last_name', 'ssn',
2 'sex', 'address', 'city', 'state', 'zip', 'street_number',
3 'street_name', 'DOB']]
4 df2 = df2.loc[:,['simulant_id', 'first_name', 'last_name', 'ssn',
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5 'sex', 'address', 'city', 'state', 'zip', 'street_number',
6 'street_name', 'DOB']]
7 # df1 = df1.drop(['ssn_before_swap', 'unit_number', 'dob'], axis=1)
8 # df2 = df2.drop(['unit_number', 'dob'], axis=1)
9 df1.rename(columns={"DOB": "dob"}, inplace=True)

10 df2.rename(columns={"DOB": "dob"}, inplace=True)

A comprehensive book on Pandas 2.2.0 is “Effective Pandas 2” (Harrison 2024). A comprehensive
tutorial book on Splink 3.9.5 is “Hands-On Entity Resolution” (Shearer 2024).

Step 2: Blocking

Step 2 in the linkage process is deterministic matching, known as blocking. Splink defines a
linkage model with a settings dictionary. Splink 4 is expected to be backwards compatible.
Splink has two types of blocking: for prediction, and for estimation. The blocking for prediction
is specified in the settings dictionary.

1 # Step 2: Blocking
2 start_time = time.time() 1

3

4 from splink.duckdb.linker import DuckDBLinker 2

5 from splink.duckdb import comparison_library as cl
6 from splink.duckdb.blocking_rule_library import block_on # new in v3.9.5
7

8 settings = { 3

9 "unique_id_column_name": "simulant_id", 4

10 "link_type": "link_only", 5

11 "blocking_rules_to_generate_predictions": [ 6

12 block_on(["last_name", "dob"]),
13 block_on(["first_name", "dob"]),
14 block_on(["zip", "sex", "last_name", "first_name"]),
15 ],
16 "comparisons": [ 7

17 cl.jaro_winkler_at_thresholds("first_name", [0.9, 0.7]),
18 cl.jaro_winkler_at_thresholds("last_name", [0.9, 0.7]),
19 cl.levenshtein_at_thresholds("dob", [1,2]), #
20 cl.levenshtein_at_thresholds("street_number", [1,2]), #
21 cl.levenshtein_at_thresholds("street_name", [1,2]),
22 cl.damerau_levenshtein_at_thresholds("ssn", [1, 2]),
23 cl.exact_match("zip"),
24 cl.exact_match("sex"),
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25 ],
26 "retain_matching_columns": True, 8

27 "retain_intermediate_calculation_columns": True,
28 "em_convergence": 0.0001 9

29 }

1 start to time the code
2 DuckDB-specific code, see Choosing a backend
3 Define a Splink model with a settings dictionary
4 unique_id_column_name is required if not named unique_id (default).
5 Link type: Linkage without deduplication.
6 Blocking for prediction: Ensure comparisons are generated for all true matches
7 Customise comparisons using the ComparisonLibrary and, if wanted, Term-Frequency

adjustments
8 See guide to Splink settings for more details
9 Default EM convergence tolerance. A smaller value such as 0.01 tends to result in slightly

more links but of low quality.

The Splink linker object holds the record linkage model. Splink is highly scalable by allowing
for different database backends. DuckDB is the default and is used here:

1 # Step 3: Record Linkage
2 linker = DuckDBLinker([df1, df2], settings, 1

3 input_table_aliases=["df1_large", "df2_small"])

1 The linker object

The blog for Splink 3.9.10 mentions the completeness chart. The missingness chart is still
available. In practice, the newer and more concise completeness chart replaces the missingness
chart, see Figure 1 below. The blocking for prediction works cumulatively, as shown in Figure
2 below:

1 c_completeness = linker.completeness_chart(cols=['simulant_id',
2 'first_name', 'last_name', 'ssn', 'sex', 'address', 'city',
3 'state', 'zip', 'street_number', 'street_name', 'dob'])
4 c_completeness.save("c_completeness.png") 1

5 # Block 1 = 610,592 obs, block 2 = 685,396 obs, and block 3 = 577,574 obs
6 block_chart = linker.cumulative_num_comparisons_from_blocking_rules_chart()
7 block_chart.save("block.png", scale_factor=2, ppi=300) 2

1 Completeness chart
2 Blocking chart
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Figure 1: Completeness Chart

Figure 2: Blocking Chart

Step 3: Record linkage

Step 3 in the linkage process is the actual linkage. Blocking for model training may exclude
true matches. Work in progress is auto blocking. Below, we manually create blocking rules for
EM model training.

1 # https://moj-analytical-services.github.io/
2 # splink/topic_guides/blocking/model_training.html
3 blocking_rule_4 = block_on(["first_name", "last_name", "street_number"])
4 count = linker.count_num_comparisons_from_blocking_rule(blocking_rule_4)
5 print(f"Comparisons generated by '{blocking_rule_4.blocking_rule_sql}': {count:,.0f}")
6 # -> 540,867
7

8 blocking_rule_5 = block_on(["sex", "zip", "street_name", "dob"])
9 count = linker.count_num_comparisons_from_blocking_rule(blocking_rule_5)

10 print(f"Comparisons generated by '{blocking_rule_5.blocking_rule_sql}': {count:,.0f}")
11 # -> 550,091
12
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13 blocking_rule_6 = block_on(["substr(ssn, 1,6)"])
14 count = linker.count_num_comparisons_from_blocking_rule(blocking_rule_6)
15 print(f"Comparisons generated by '{blocking_rule_6.blocking_rule_sql}': {count:,.0f}")
16 # -> 956,664

Three parameters need to be estimated for the record linkage: lambda, u and m. First, we
estimate model parameter lambda, also known as the prior. A minor issue is that the output
does not line wrap when rendering to PDF. Similarly, sometimes code does not line wrap when
rendering to PDF, see Quarto issue 5343:

1 deterministic_rules = [
2 "l.ssn = r.ssn"
3 ]
4 linker.estimate_probability_two_random_records_match(deterministic_rules, recall=0.85)

to match. With 449,211,603,714 total possible comparisons, we expect a total of around 637,130.59 matching pairs
Probability two random records match is estimated to be 1.42e-06.
This means that amongst all possible pairwise record comparisons, one in 705,054.21 are 

Estimate the probability u that wrong matches match. The set seed parameter is not always
working, see issue 1743.

1 linker.estimate_u_using_random_sampling(max_pairs=1e9, seed=123) 1

1 Linker function estimate_u_using_random_sampling()

It is the most time consuming part. Show run time in elapsed minutes:

1 print("--- %s elapsed minutes ---" % round((time.time() - start_time) / 60))

--- 21 elapsed minutes ---

Estimate the probability m that true matches match:

1 # (The text is truncated in PDF. Could be resolved by editing the intermediate md file.)
2 training_blocking_rule = block_on(["first_name", "last_name", "street_number"]) 1

3 training_session_names = linker.estimate_parameters_using_expectation_maximisation( 2

4 training_blocking_rule, estimate_without_term_frequencies=True)
5

6 training_blocking_rule = block_on(["sex", "zip", "street_name", "dob"]) 3

7 training_session_names = linker.estimate_parameters_using_expectation_maximisation(

37

expected.

https://github.com/quarto-dev/quarto-cli/issues/5343
https://github.com/moj-analytical-services/splink/issues/1743
https://moj-analytical-services.github.io/splink/linkerexp.html?h=estimate_u#splink.linker.Linker.estimate_u_using_random_sampling


8 training_blocking_rule)
9 training_session_names.match_weights_interactive_history_chart()

10

11 # training_blocking_rule = block_on(["substr(ssn, 1,6)"]) 4

12 # training_session_names = linker.estimate_parameters_using_expectation_maximisation(
13 # training_blocking_rule)
14 # training_session_names.match_weights_interactive_history_chart()

1 Blocking for estimation (training), first pass
2 Estimate the probability m that true matches match
3 Blocking for estimation (training), second pass

The Splink match weight chart shows the results of a trained Splink model. The exact match
comparison takes priority. Records that do not fall within a comparison level are allocated to
the rest of the comparison levels. On these data, because of 1% transposition error of ssn in
df1, the Damerau-Levenshtein comparison for ssn had a larger weight (18) than the second
strongest linkage variable dob (14):

1 c_matchweights = linker.match_weights_chart() 1

2 c_matchweights.save("c_matchweights.png")

1 Match Weight Chart
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Figure 3: Match Weight Chart

Threshold selection is a key decision point within a linkage pipeline. One of the major benefits 
of probabilistic linkage versus a deterministic (i.e., rules-based) approach is the ability to 
choose the amount of evidence required for two records to be considered a match (i.e., a 
threshold).

When you have decided on the metrics that are important for your use case, you can 
use the Threshold Selection Tool to get a first estimate for what your threshold should be. It 
i s a new feature in Splink 3.9.14. At minimum, it requires a single ground truth 
column as illustrated in an example titled Evaluation from ground truth column. 
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In principle, it would be a single column similar to psp_actual. However, in practical applications 
having fully labelled data is rare, which is probably why this simpler approach currently does not 
work; see issue 2059. Instead, we must use threshold_selection_tool_from_labels_table. There is no 
template code available, and therefore we opened discussion issue 2082. In the meanwhile, we have 
to create the ground truth manually. The first step is to create a dataframe of predictions without 
specifying the threshold:

1 # create dataframe of predictions
2 df_predict = linker.predict() # SplinkDataFrame
3 df_predict.to_csv("splink_predictions.csv", overwrite=True) # 757,038

The next, more difficult step is to create the required ground truth table:

1 df_labels.rename(columns={"simulant_id": "simulant_id_r"}, inplace=True)
2 df_predict2 = df_predict.as_pandas_dataframe()
3 df_chart = pd.merge(df_labels, df_predict2, on='simulant_id_r',
4 how='left', indicator=True, validate='1:m') 1

5

6 df_chart = df_chart.sort_values(by=['simulant_id_l', 'simulant_id_r'], kind='stable',
7 na_position='first') #
8 df_chart['dup'] = df_chart.duplicated(keep='first', subset=['simulant_id_r']) #
9 df_chart = df_chart.drop_duplicates(subset=['simulant_id_r'], keep='first') #

10

11 # df.loc[<condition>, 'newvar'] = <expression>
12 df_chart.loc[df_chart._merge=="left_only", 'simulant_id_l'] = df_chart.simulant_id_r
13 df_chart.loc[df_chart._merge=="left_only", 'source_dataset_l'] = 'df1_large'
14 df_chart.loc[df_chart._merge=="left_only", 'source_dataset_r'] = 'df2_small'
15

16 df_chart.loc[(df_chart._merge=="left_only") & (df_chart.clerical_match_score==0),
17 'simulant_id_l'] = df_chart.simulant_id_l[0] 2

18

19 labels2 = df_chart.filter(['source_dataset_l', 'simulant_id_l',
20 'source_dataset_r', 'simulant_id_r', 'clerical_match_score'])
21 labels2 = labels2.reset_index(drop=True) 3

22 labels2.head(5)
23

24 labels2.to_csv("labels.csv", index=False) 4

25 labels_table2 = linker.register_labels_table(labels2)
26

27 c_threshold = linker.threshold_selection_tool_from_labels_table(labels_table2) # graph (PDF only)
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28 c_threshold.save("c_threshold.png", scale_factor=2) 2

29

30 pd.crosstab(df_chart._merge, df_chart.clerical_match_score, margins=True, margins_name='Total') #

1 1:m merge
2 The first matched value (‘1007_1001150’) for TN
3 Get back the default index
4 Save to CSV to enable error checking later

source_dataset_l simulant_id_l source_dataset_r simulant_id_r clerical_match_score
0 df1_large 1007_1001150 df2_small 1007_1009196 0.0
1 df1_large 1007_121432 df2_small 1007_121432 1.0
2 df1_large 1007_1001150 df2_small 1007_15116 0.0
3 df1_large 1007_164005 df2_small 1007_164005 1.0
4 df1_large 1007_1001150 df2_small 1007_177787 0.0

clerical_match_score 0.0 1.0 Total
_merge
left_only 8635 12582 21217
both 1352 647645 648997
Total 9987 660227 670214

1 c_threshold = linker.threshold_selection_tool_from_labels_table(labels_table2) 1

2 c_threshold.save("c_threshold.png", scale_factor=2) 2

1 Threshold selection tool
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Figure 4: Threshold Selection Tool

The threshold selection tool should use ordinary numbers, not scientific notation. See issues 
2112 (resolved in version 3.9.15) and 2070 (not yet resolved).

The Threshold Selection Tool suggests that, as expected, we need at minimum a 
threshold match probability of 0.95. Therefore, we now predict the results with a specified 
threshold match probability of 0.95:

1 # Linker is a duckdb linker with link_type set to "link_only"
2 results = linker.predict(threshold_match_probability=0.95) 1

3 records_to_plot = results.as_record_dict(limit=10)
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1 Predict which records match using the blocking rules in “step 2” and threshold 0.95.

Unlike fastLink, Splink requires extra code for removing possible duplicates from the record
linkage. The required extra code below is commented on little to save space, and to avoid
confusion because deduplication is not related to the linkage itself:

1 1

2 sql = f"""
3 with ranked as
4

5 (
6 select *,
7 row_number() OVER (
8 PARTITION BY simulant_id_l order by match_weight desc
9 ) as row_number

10 from {results.physical_name}
11 )
12

13 select *
14 from ranked
15 where row_number = 1
16 """
17 results = linker.query_sql(sql) 2

1 SQL “f-string” code
2 Remove duplicates using SQL

Step 4: Canonicalization

Step 4 of the linkage process is canonicalization. The Splink waterfall chart shows the
breakdown of the match weight for pairs of records, which is useful for clerical review:

1 c_waterfall = linker.waterfall_chart(records_to_plot,
2 filter_nulls=False, remove_sensitive_data=True) 1

3 c_waterfall.save("c_waterfall.png", scale_factor=2) 2

1 Create variable c_waterfall for waterfall chart
2 Save the waterfall chart using the new, simpler Altair 5 syntax
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Figure 5: Waterfall Chart

The water fall chart here shows a low-quality match. For example, the Final Score ssn has no
weight because it is missing in df2, and street_name has a negative weight (-7.25) because it
differs by a typographical error (letter “k” instead of “c”). The waterfall chart is best used
interactively, by rendering Quarto to HTML.

This pandas code drops the duplicates, saves the dataset as CSV, and it displays the links:

1 # create new variable 'dup', then drop duplicates, and count
2 results.shape[0] 1

3 results2 = results.sort_values(by=['simulant_id_r', 'match_probability'],
4 ascending=False, ignore_index=True)
5 results2['dup'] = results2.duplicated(keep=False, subset=['simulant_id_r']) 2

6 results2 = results2.drop_duplicates(subset=['simulant_id_r']) 3

7 results.to_csv('monograph2024_supplement3_dup.csv', index=False) 4

8 results2.shape[0] 5

1 Links before deduplication
2 Create new variable dup
3 Drop duplicates in terms of simulant_id_r
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4 Save dataframe as CSV file
5 Links after deduplication

646837

645786

Linkage Performance

The test data define a FP as simulant_id_l and simulant_id_r not matching. There are
about 1,000 FP:

1 results[results.simulant_id_l != results.simulant_id_r].shape[0] #
2 # len(results.loc[results.simulant_id_l != results.simulant_id_r]) # same result

1100

Here are the results after deduplication but without a clerical review. The code below uses the 
“stable matching” for deduplication, and it creates a new indicator variable dup for easy 
analysis of the duplicates.

Splink has two known issues:

• One-to-many matching rather than one-to-one matching. The issue with duplicates
in record linkage is known in the literature as the “stable marriage” issue, see Github
Splink discussion issue 1602.

• Splink does not work well on correlated variables. First name and sex are correlated.

Therefore, we drop the 2,000+ uncertain observations due to one-to-many matches or with no
match on first_name and sex, which often are correlated. Here is the code and the results:

1 results2[( (results2.first_name_l != results2.first_name_r) &
2 (results2.sex_l != results2.sex_r)) |
3 (results2.dup == 1)].shape[0] 1

4 results3 = results2[~((results2.first_name_l != results2.first_name_r) &
5 ( results2.sex_l != results2.sex_r ) |
6 (results2.dup == 1))]
7 results3.shape[0] 2

8 results3[results3.simulant_id_l != results3.simulant_id_r].shape[0] 3
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9 results3[results3.simulant_id_l == results3.simulant_id_r].shape[0] 4

10 results3.to_csv('monograph2024_supplement3__dup2.csv', index=False) 5

1 Uncertain observations
2 Links after dropping uncertain observations
3 FP after dropping uncertain observations
4 TP after dropping uncertain observations
5 CSV file after dropping uncertain obs

2340

643446

15

643431

Sensitivity Analysis

The analysis without SSN found that a reasonable a threshold match probability for matches
is 0.999999999 (9 decimals) because the links drop drastically when we increase from 9 to
10 decimals. The code to produce the links, FP and TP by increasing the threshold match
probability from 0.95 to 0.999999999 (9 decimals):

1 results3[(results3.match_probability >= 0.999999999)].shape[0]
2 results3[(results3.match_probability >= 0.999999999) &
3 (results3.simulant_id_l != results3.simulant_id_r)].shape[0]
4 results3[(results3.match_probability >= 0.999999999) &
5 (results3.simulant_id_l == results3.simulant_id_r)].shape[0] #

627453

3

627450

Table 1 shows the resulting confusion table.
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Table 1: Confusion Table with 99.9999999% match probability (N=627,319)

True Matches True Non-Matches Total
Links 627,315 TP 4 FP 627,319
Non-Links 32,912 FN 9,983 TN 42,895
Total 660,227 9,987 670,214

Note: Match probability is >= 0.999999999 (9 decimals). Only one-to-one matches (no
duplicates), and no non-match on both first name and sex. Expected manual review is <= 500
records.

See Table 2 for the confusion table when ssn is not available as a linkage variable (and see the
section Reproducibility, footnote 1, for how to reproduce the report):

Table 2: Confusion Table with 99.9999999% match probability. Same configuration as Table 1
but without SSN as a linkage variable (N=578,729)

True Matches True Non-Matches Total
Links 578,726 TP 3 FP 578,729
Non-Links 81,301 FN 9,984 TN 91,485
Total 660,227 9,987 670,214

Note: Match probability is >= 0.999999999 (9 decimals). Only one-to-one matches (no
duplicates). Expected manual review is <= 500 records.

Table 3 lists the 4 FP in Table 1:

Table 3: List the 4 FP when SSN is available as a linkage variable

simulant_id_l  simulant_id_r first_name_l   first_name_r    ssn_l ssn_r

7745_206735 7745_206733 CAMERON WILLIAM 087101610 087101610
4400_278663 4400_278664 JORDAN JOHN 655243080 655243080
40_28686 40_28685 ANGELA ANGIE 575867836
1219_351363 1219_351364 JOSHUA VERONICA 709517582 709517582

Note: Match probability is >= 0.999999999 (9 decimals). Only one-to-one matches 
(no duplicates), and no non-match on both first name and sex. Expected manual review i s <= 
500 records.
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For the test data, the match probability 0.999999999 (9 decimals of 9s) is a reasonable default
cutoff when the goal is to automatically reduce FP, not necessarily all FP. Because of computer
precision, it can be better to express match probability as a percentage, that is 99.9999999%
rather than 0.999999999.

The focus of the manual review on these test data should be on first name because the FP are
mostly in terms of first name. However, it is unrealistic to expect 0 FP in large record linkages,
especially when SSN is not available. On the test data, there are 40,152 record pairs with a
match probability 99.9999999% that still differ on first name. The hard unresolved issue is how
to deal with FP when SSN is not available.

Recommendation

Splink has a results variable for Match Probability, match_probability. The main concern
of the FCDS is no expected FP. With the original match probability threshold of 0.95, the
result was 19 FP when ssn is available. To reduce FP, we dropped 2,405 observations that
were either one-to-many matches or non-matches on both first name and sex. The result was
19 FP. Therefore, we require a match probability of at least 99.9999999%. The result was 4
FP. There were only 19 observations with match probability less than 0.99. Going forward,
we recommend the default threshold_match_probability of 0.99 (not 0.95) to determine
definite non-matches.

Splink contains a variety of tools to help visualising predictions such as the match weight
chart and the waterfall chart. Splink also has functions to perform more formal accuracy
analysis such as the threshold selection tool but these functions require the actual (true) match
status such our pseudopeople test data.

Overall, the Splink test results are much better than Match*Pro and better than fastLink.
However, the FCDS does not have a template for using Splink. The next step is to get a
template for using Splink.

, Important – Planned improvements for fall 2024

Update to Splink 4, which is expected in fall 2024.
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S4 Match*Pro Results on the pseudopeople
Test Data

This fourth part of the supplement, S4, describes the Match*Pro results on the pseudopeople 
test data. Match*Pro is a Java-based proprietary software provided by the National Cancer 
Institute (NCI), and it is developed by Information Management Services (IMS) for the Virtual 
Pooled Registry-Cancer Linkage System (VPR-CLS). Match*Pro has a graphical user interface 
(GUI). All Match*Pro user settings are in the Match*Pro linkage configuration fi le (*.mplc). 
Therefore, screenshots from the Match*Pro linkage configuration fi le, ra ther th an co de, will 
be provided for the four basic linkage steps.

The results are similar when using Social Security Number (SSN) or not. The larger data frame 
1 has 1% transposition noise in SSN. In a previous version without this noise, the results were 
highly dependent on using SSN. There were 436,494 correct matches (true positives, TP), 4 
wrong matches (false positives, FP), 223,733 or 33.9% missed matches (false negatives, FN), 
and 9,983 correct non-matches (true negatives, TN) on the test data if using SSN; see Table 
1. There were 442,338 TP, 3 FP, 217,889 or 33.0% FN, and 9,984 TN on the test data if not 
using SSN; see Table 2. These results assume that all “Matches with Total Score > 40” are 
matches after a manual review.

In contrast, the default settings without this assumption result in at least 123 FP and require 
a clerical review of up to 65,566 records; see Tables 3-5. Those results are unaccptable to the 
FCDS. Therefore, the main text will only report Tables 1 and 2.

It would greatly help if Match*Pro could provide Match Probability as a results variable for 
more comparable results; see Table 6. In principle, a Match Probability variable would be easy 
to implement for the optional EM algorithm but hard to implement for the default EpiLink-like 
frequency-based algorithm.

Step 1: Attribute Alignment

Figure 1 below is a screenshot of the “Input” tab in the default Match*Pro linkage configuration 
file.
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Figure 1: Match*Pro default for linkage input

The compatible file types for Match*Pro input are fixed width, delimited and NAACCR XML.
The “NAACCR XML” file type is the NAACCR XML data exchange standard. Figure 2
below is a screenshot of the “Input” tab in the Match*Pro linkage configuration file for the
pseudopeople test data.

Figure 2: Match*Pro linkage input configuration for the pseudopeople test data

The “Input” is easy to configure compared with having to write code. For example, for
the “Entity ID”, the default is Patient ID (see Figure 1), whereas it is simulant_id in the
pseudopeople data (see Figure 2). However, data cleaning is limited. For example, the user
can rename columns but otherwise cannot standardize columns.

Step 2: Blocking

It would help to better distinguish between blocking and record linkage if blocking was optional
and if you could save the blocked data. Match*Pro displays the “Blocking” tab after the
“Matching” tab despite that blocking is typically done before matching. See Figure 3.
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Figure 3: Match*Pro default for blocking

Figure 4 below is the equivalent screenshot for blocking on the test data.

Figure 4: Match*Pro blocking configuration for the pseudopeople test data

Step 3: Record Linkage

Match*Pro by default uses the matching parameters in Figure 5.
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Figure 5: Match*Pro default for linkage

Match*Pro uses the matching parameters in Figure 6 on the test data.

Figure 6: Match*Pro matching configuration on the test data

The column “MProb” in Figure 6, or “m probability”, is the pre-determined match probability
for each linkage variable. The scores from each set are combined to obtain the Total Score.
The scoring values are “Default”, “None”, and “Additive”. The value “Default” always affects
Total Score. The value “None” never affects Total Score. The value “Additive” means that
the score for a matching parameter will only affect Total Score if it is greater than or equal
to zero. The “Linear” scoring method, which is the default, gives partial weight for partial
matches.

Match*Pro by default uses a frequency-based EpiLink-like (Contiero et al. 2005) algo-
rithm for calculating Total Score. Link Plus with the Direct Method, the R package
RecordLinkage with the function epiWeights and the free and open-source (FOSS) Java soft-
ware Mainzelliste are three other record linkage software which also use a frequency-based
EpiLink-like algorithm.
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By default, Match*Pro uses a complicated set of 91 deterministic rules for classification (also 
known as “prediction”), out of which 38 rules classify “Match”, and 53 rules classify “Uncer-
tain”. Remaining linked pairs are classified as “ Non-Match”. We simplified classification by not 
using “Middle Name” and “Telephone”. The number of rules changed from 91 to 72, with 29 
rules in the Match Classification Filter and 43 rules In the Uncertain Classification Filter. The 
equivalent of Total Score in fastLink and Splink is Match Weight. fastLink and Splink 
rely completely on Match Weight and on a derived “Match Probability” for classification. How-
ever, Match*Pro does not use Total Score or a derived “Match Probability” for classification. 
Match*Pro does not even have a column or variable for “Match Probability”. Match*Pro uses 
deterministic classification to ensure definite non-match for certain linkage combinations such 
as complete mismatch on first n ame. The a lternative i s to fi lter out invalid li nkage combina-
tions in pre- or post-processing. Regardless, it is critical to lower the Total Score (and Match 
Probability) appropriately so that Total Score always is higher for “Match” than for “Un-
certain” than for “Non-Match”. Using Total Score for classification would b e very s imple to 
implement: “totalscore_match > totalscore_uncertain > totalscore_nonmatch”. Ar-
guably, using Total Score for classification would a lso make c lassification ea sier and sa fer to 
use, understand, and explain.

Because the Match*Pro classification rules are so complicated, a single screenshot would result 
in too small text to read. Therefore, Figure 7 below only shows the first 5  c lassification rules 
for each filter.

Figure 7: Match*Pro classification on the test data – first 5 rules
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Step 4: Canonicalization

Step 4, canonicalization, is the post-processing step. The aim is to get unique and representa-
tive, that is, “canonical”, records. Figure 8 below is a screenshot of the “Options and Output”
tab in the default Match*Pro linkage configuration file.

Figure 8: Match*Pro default for options and output

The setting “Auto-Adjust Cutoff 5%” means that 5% of the records in the smaller file are
expected to be matches. The option “Auto-Adjust Cutoff 0.95” is, according to the User’s
Guide, the “desired PPV (i.e., the desired probability that two records are NOT matched
together by chance)”. How does this “5% expectation” and “0.95 probability” affect Total
Score? It is undocumented in Match*Pro. The setting “EM Algorithm Disabled” means that
Match*Pro uses a frequency-based EpiLink-like algorithm. The Match*Pro linkage log and
results can be saved separately in a “txt” text file file and in an “mplr” Match*Pro file. In
the linkage results screen, the first column is Match Status with values “v” for “Match”, “?”
for “Uncertain” and “x” for “Non-Match”. The second column is Total Score with the values
for Total Score and, below, “Overall Similarity”. The Overall Similarity can be misleading
because it is not a Match Probability despite being on the 0-1 scale. In Figure 9 below, from
a previous run with no transposition noise in SSN, the record is classified as “Match” with
Total Score 59.6 and Overall Similarity 1.00.
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Figure 9: Match*Pro results – first 1 record

Overall similarity is sometimes known as “fuzzy matching”. The “Total Score” improves on
“Overall Similarity” by accounting for the frequencies in the overall dataset (which is sometimes
known as “term frequencies”) or more broadly measuring how common different scenarios are.
However, neither Overall Similarity nor Total Score measures the relative importance of non-
matches. It would require Match*Pro to estimate the m probabilities based on the data.
Instead, Match*Pro by default (that is, when EM is disabled), as shown previously in Figure
6, uses pre-determined and fixed m probabilities.

Clicking on the menu icon “Assign Status” brings up the Assign Match Status dialog window
as in Figure 10. See the Match*Pro User’s Guide, page 141, for details. The dialog window
allows you to modify Match Status based on Total Score.

Figure 10: Match*Pro Assign Match Status dialog window for test data

55



Results

The Match*Pro results are more subjective than necessary due to Match*Pro not providing 
match probability. It is standard to present record linkage results in the form of a confusion 
table (also known as confusion matrix). The basic measures are TP, FP, FN, and TN. The 
confusion table consists of number counts. For FP, we generally are interested in the 
number count. However, for FN we generally are interested in the percentage rate for 
easier comparisons. Tables 1-5 below illustrate three different scenarios: optimistic, neutral, 
and conservative. The number of predicted matches differs approximately 65,000 depending 
on the accepted match probability; see Table 6 below for a summary table.

In the conservative scenario, if only all matched records with Total Score 40 are matches after 
the manual review, there are 436,498 predicted matches. The manual review would be up to 
1,000 “Match” records with the lowest Total Score > 40. See Table 1 below. Similar results are 
achieved if the match threshold is increased from the default 0.95 to the highest setting 0.99 
(see Figure 8); see the sensitivity analysis section (especially Tables 4, 6 and 7) for details.

Table 1: Confusion Table if “predicted matches” include all “Match” records with Total Score 
> 40 (N=436,498)

True Matches True Non-Matches Total
Links 436,494 TP 4 FP 436,498
Non-Links 223,733 FN 9,983 TN 233,716
Total 660,227 9,987 670,214

Note: Expected manual review is <= 1,000 records (“Match” with lowest Total Score > 40).
The FN rate is 33.9% (that is, 100 * 223,733 / 660,227).

Table 2 below is the same conservative scenario as Table 1 but without using SSN.

Table 2: Confusion Table if “predicted matches” include all “Match” records with Total
Score > 40. Same configuration as Table 1 but without SSN (N=442,341)

True Matches True Non-Matches Total
Links 442,338 TP 3 FP 442,341
Non-Links 217,889 FN 9,984 TN 227,873
Total 660,227 9,987 670,214
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Note: Expected manual review is <= 1,000 records (“Match” with lowest Total Score > 40).
The FN rate is 33.0% (that is, 100 * 217,889 / 660,227).

Table 2 without ssn provides slightly better results than Table 1. In the conservative scenario,
Match*Pro is unable to take advantage of ssn in Table 1. One possible reason is that maybe
the “SSN” comparator performs worse than the Damerau-Levenshtein comparator which is
available but not used by default.

Sensitivity Analysis

In the optimistic scenario, if SSN is used and if all “Uncertain” records are matches after the
manual review, there are 502,054 predicted matches. The manual review would be up to all
65,566 “Match” or “Uncertain” records with Total Score <= 40. See Table 3 below.

Table 3: Confusion Table if “predicted matches” include all “Uncertain” records (N= 502,054)

True Matches True Non-Matches Total
Links 501,927 TP 127 FP 502,054
Non-Links 158,300 FN 9,860 TN 168,160
Total 660,227 9,987 670,214

Note: Expected manual review is <= 65,566 records (“Total Score <=40”).

In the neutral scenario, if SSN is used and if all “Match” records are matches after the manual
review, there are 501,866 predicted matches. The manual review would be up to all 65,368
“Match” records with Total Score <= 40. See Table 4 below.

Table 4: Confusion Table if “predicted matches” include all “Match” records (N=501,866)

True Matches True Non-Matches Total
Links 501,743 TP 123 FP 501,866
Non-Links 158,484 FN 9,864 TN 168,348
Total 660,227 9,987 670,214

Note: Expected manual review is <= 65,368 records (“Match” with Total Score <= 40).

Table 5 is the same neutral scenario as Table 4 except that SSN is not used.
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Table 5: Confusion Table if “predicted matches” include all “Match” records. Same
configuration as Table 4 but without SSN (N=502,304)

True Matches True Non-Matches Total
Links 501,934 TP 370 FP 502,304
Non-Links 158,293 FN 9,617 TN 167,910
Total 660,227 9,987 670,214

Note: Expected manual review is <= 59,963 records (“Match” with Total Score <= 40).

Table 1 using SSN and Table 2 not using SSN are the main results. Tables 1-5 rely on Total
Score. The average Total Scores, when rounded to one decimal, are the following for each
match status: “Match” = 41.0, “Uncertain” = 32.6 , and “Non-Match” 32.1.1

Ideally, we also want a results variable “Match Probability”. An approximate Match*Promatch
probability can be calculated by scaling the range of Total Score. This is known as “probability
calibration”. The Auto-Adjust Cutoff of 0.95 and the minimal Total Score 27.9 presumably
correspond to match probability 0.95, because the Match*Pro threshold is 0.95 (see Figure
8), and the maximum Total Score 41.9 presumably corresponds to match probability 1.0. If
this assumption holds, then a 2.8 average difference in Total Score corresponds to a 0.01 (1%)
difference in match probability, as shown in Table 6.

Table 6: Matches based on Total Score and hypothetical Match Probability

Score Probability Matches
27.9 (min) 0.95 504,769
30.7 0.96 493,329
33.5 0.97 486,238
36.3 0.98 475,648
39.1 0.99 442,052
41.9 (max) 1.0 420,534

Note: The Total Score range is 27.9-41.9. The corresponding hypothetical Match Probability
range is 0.95-1.0. A 2.8 average difference in Total Score corresponds to a 0.01 (1%) difference
in hypothetical Match Probability.

1In the previous version without noise in ssn, the averages were higher: “Match” = 55.0, “Uncertain” = 38.7 ,
and “Non-Match” 34.9. The maximum Total Score was 59.6. It is beyond the scope here to further discuss
preliminary results from the previous version. The point here simply is that, as expected, the average Total
Scores are higher when there is less noise and they are lower when there is more noise.
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Table 6 with the hypothetical match probability 0.99 and 442,052 matches approximately
correspond to Table 2 with “Total Score > 40” and 442,341 matches.

Table 7 below uses the “Auto-Adjust Cutoff” 0.99 for the “desired PPV” (see Figure 8) of 0.99,
which is the largest cutoff possible in Match*Pro. However, the actual result 493,587 links is
closer to the calibrated 493,329 links and match probability 0.96 than to the calibrated 442,052
links and match probability 0.99.

Table 7: Confusion Table if “predicted matches” include all “Match” records. Same
configuration as Table 4 but with the ”Auto-Adjust Cutoff” 0.99 (N=493,587)

True Matches True Non-Matches Total
Links 493,534 TP 53 FP 493,587
Non-Links 166,693 FN 9,934 TN 176,627
Total 660,227 9,987 670,214

Note: Expected manual review is <= 55,225 records (“Match” with Total Score <= 40).

We also ran Match*Pro with the EM algorithm enabled. The results were meaningless to the
FCDS, and unstable. We tried three EM settings:

1) The equivalent of Table 1 but with “EM Enabled” resulted in this error mes-
sage: “The linkage session failed. Encountered an exception while classifying
linked pairs. View the log for details.” The log provided this error message:
“org.h2.jdbc.JdbcSQLNonTransientException: General error:”java.lang.IllegalStateException:
File corrupted in chunk 6629, expected page length 4..384, got -1725528077 [1.4.200/6]“.
It is a well-known problem with the H2 database which comes with Match*Pro in
the lib folder, for example see H2 database issue 2139. The H2 release 2.2.222 from
8/22/2023 claims to fix this”file corrupted in chunk” issue.

2) Emptying the “Classification” tab resulted in max Total Score 35.3, which is below the
acceptable threshold 40.

3) Not using ssn (and keeping the classification rules) resulted in all observations having
Total Score in the range 136.3-164.2. The log file provided these linkage quality measures:
541,561 TP, and 0 FP, and 128,589 TN and 64 FN. These EM results are superior both in
terms of Total Scores and the confusion table. Table 8 is the same conservative scenario
as Table 2 except that EM is used.
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Table 8: Confusion Table if “predicted matches” include all “Match” records with Total Score
> 40. Same configuration as Table 2 (that is, without SSN) but EM is used (N=515,590)

True Matches True Non-Matches Total
Links 515,148 TP 442 FP 515,590
Non-Links 145,079 FN 9,545 TN 154,624
Total 660,227 9,987 670,214

Note: Expected manual review is <= 1,000 records (“Match” with Total Score <= 40). EM
is used. Warning: These EM results are not valid because the non-EM and EM results use
different scales for Total Score.

In Table 8 with EM enabled, the minimum Total Score is 136.3. In Table 2 with EM disabled,
the maximum Total Score is 41. How do we explain the superior EM results? There are only
433,570 links with the highest Total Score 164.2 which is very similar to the non-EM results in
Table 2. The non-EM and EM results seem to use different scales for Total Score. IMS should
document this and, more importantly, provide a more comparable results variable for match
probability.

Match*Pro feature request to add Match Probability

Match*Pro does not have a results variable for Match Probability. It is needed for more
comparable results because most linkage quality measures in the record linkage literature
are based on match probability. For example, the confusion table measures, and derived
measures such as Positive Predictive Value (PPV, also known as precision) and True
Positive Rate (also known as recall and sensitivity), are based on match probability. A
Match*Pro user could do a min-max scaling of Total Score, or something similar, to create
an approximate match probability. Table 6 gives a hypothetical example based on the
claimed “linear” (see Figure 5) scoring method. Completely different results than Table 1
are possible with different assumptions of needed manual review and match probability, as
shown in Tables 2-6. The lack of a variable Match Probability (or similar) in Match*Pro
is a serious issue in terms of less transparency, comparability, and reproducibility.
The Match*Pro log file for the EM results states: “A true assessment of the linkage quality
can only be obtained after a thorough manual review of the linkage results followed by an
independent, blind comparison with a reference (gold) standard.” We agree. Nevertheless,
match probability is an essential concept of probabilistic record linkage – too important
to be omitted as a results variable. The results variable match weight should also be
provided since it is used to calculate the match probability.

A more critical view is that EpiLink-like frequency-based approaches such as Match*Pro (de-
fault, non-EM) simply cannot appropriately weight matches as match probabilities. Without
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mentioning Match*Pro, this is the view taken by Robin Linacre, the lead developer of Splink, 
in a blog post titled “Why Probabilistic Linkage is More Accurate than Fuzzy Matching For 
Data Deduplication”.

For examples of FP, Table 9 below lists the 4 FP in Table 1. The first row is a  FP because 
of missing first_name, different sex, and different dob. Rows 2-4 are FP  because of  different 
dob.

Table 9: List of the 4 FP in Table 1

Total Score Predicted Actual File1id File2id
40.4 Match Non-match 1235_670643 1235_670644
41.9 Match Non-match 5348_901917 5348_901918
41.9 Match Non-match 5594_237736 5594_237734
41.9 Match Non-match 9272_30612 9272_30613

Note: Predicted match is defined as “Match with Total Score >  4 0”. We use this conservative 
approach because Match*Pro has no results variable Match Probability for more comparable 
results. Actual non-match is defined as File1id not equal to File2id.

Recommendation

The FCDS already recommends and uses Match*Pro in VPR Phase 1 record linkages where 
fast and approximate results matter more than slow and accurate results. The Match*Pro test 
results show that the current version 2.4.4 has improved on the previously tested version 1.6.2 
mostly by controlling expected FP at the expected expense of more FN. The tests results are 
acceptable to the FCDS as long as the manual review is feasible. In practice, the expected 
manual review for Match*Pro must be at most approximately 1,000 records or the data request 
would require a special time and cost approval. The equivalent standard amount of manual 
review for fastLink and Splink is approximately at most 500 records.

The author recommends Match*Pro if the expected manual review is <1,000 records, and if 
time and cost (see the FCDS data request fees) or protocol matter more than expected more 
FN. The main text will present only the Match*Pro conservative results of “Matches with Total 
Score > 40” as in Tables 1-2, unless Match*Pro adds a results variable Match Probability for 
more comparable results.

What’s next?

Compare the performance again if a results variable Match Probability becomes available.
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