New Radiation Tools and Techniques for Cancer Treatment

FCDS Annual Conference
8/1/2019
Orlando, Florida
Steven Peace, CTR
“Funding for this conference was made possible (in part) by the Centers for Disease Control and Prevention. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services, nor does the mention of trade names, commercial practices, or organizations imply endorsement by the US Government.”

FCDS would also like to acknowledge the Florida Department of Health for its support of the Florida Cancer Data System, including the development, printing and distribution of materials for the 2018 FCDS Annual Conference and the 2018-2019 FCDS Webcast Series under state contract CODJU. The findings and conclusions in this series are those of the author(s) and do not necessarily represent the official position of the Florida Department of Health.
Outline

- Introduction
- Brief History of Radiation Therapy
- Radiation Therapy Delivery - Techniques
 - External Beam Radiation – Gamma Rays, X-rays, Particle Beam (Proton, Neutron, Electron)
 - Internal Radiation Therapy – Brachytherapy
 - Systemic Radiation Therapy - Radioisotopes
- Dose, Volume, Number of Treatments (Fractionation & Total Dose)
- Radiation Therapy Delivery – Modality
- Case Studies for Coding Radiation Treatment
- Questions
Introduction

- Radiation therapy uses high-energy particles or waves, such as x-rays, gamma rays, electron beams, or protons, to destroy or damage cancer cells.

- Your cells normally grow and divide to form new cells. But cancer cells grow and divide faster than most normal cells. Radiation works by making small breaks in the DNA inside cells. These breaks keep cancer cells from growing and dividing and cause them to die. Nearby normal cells can also be affected by radiation, but most recover and go back to working the way they should.

- Unlike chemotherapy, which usually exposes the whole body to cancer-fighting drugs, radiation therapy is usually a local treatment. In most cases, it’s aimed at and affects only the part of the body being treated. Radiation treatment is planned to damage cancer cells, with as little harm as possible to nearby healthy cells.

- Some radiation treatments (systemic radiation therapy) use radioactive substances that are given in a vein or by mouth. Even though this type of radiation does travel throughout the body, the radioactive substance mostly collects in the area of the tumor, so there’s little effect on the rest of the body.

https://www.cancer.org/treatments/radiation/basics.html
Brief History of Radiation Therapy

1895 – X-rays discovered - Roentgen
1898 – X-rays used to treat breast cancer
1898 – Radium rays discovered – Curie’s
1901 – Roentgen won Nobel Prize in Physics
1910 – High energy x-rays treating deep cancers
1920 – Radioactive isotopes, new rays, new techniques
1920 – Fractionated Dose instead of Single Dose
1930-1950 – Orthovoltage Era & interstitial radiation
1950-1980 – Megavoltage Era – Cobalt therapy, linear accelerators
1970-1980 – Proton Beam devices
1990 – 3D Conformal/Stereotactic radiation therapy devices
2000 – Adaptive radiation therapy – image guided therapies
Table 2

Different modalities of radiotherapy available for the treatment of dermatological diseases

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>TYPE OF RADIATION</th>
<th>CLINICAL INDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low energy superficial kilovoltage</td>
<td>X-ray</td>
<td>Localised superficial skin cancers</td>
</tr>
<tr>
<td>Orthovoltage X-ray</td>
<td>X-rays</td>
<td>Localised superficial skin cancers</td>
</tr>
<tr>
<td>High energy megavoltage (MV) photons</td>
<td>X-rays</td>
<td>Rarely used. Skin cancer with deep penetration</td>
</tr>
<tr>
<td>Electron Beam Therapy (Linac)</td>
<td>Electrons</td>
<td>Large or thick lesions</td>
</tr>
<tr>
<td>Cobalt therapy</td>
<td>Gamma-rays</td>
<td>Like Linac, by which they are often replaced</td>
</tr>
<tr>
<td>Brachytherapy</td>
<td>Radioactive sources (e.g. Au, CO, Cesium, Iridium...)</td>
<td>Tumours localised in critical sites</td>
</tr>
</tbody>
</table>

Global Dermatology https://doi.org/10.3889/oamjms.2017.122
Radiation Therapy Delivery - Techniques

- External Beam Radiation Therapy
- Internal Radiation Therapy or Brachytherapy
- Systemic Radiation Therapy or Total Body Radiation Therapy
- Types of Radiation Therapy Devices
- Radiation Dose, Volume, Number of Treatments, and Fractionation
Radiation Therapy Delivery – CoC Techniques

- External Beam, NOS
- Low Energy X-Ray/Photon Therapy
- 2-D Therapy
- 3-D Conformal Therapy
- Intensity Modulated Therapy
- Stereotactic Radiotherapy/Radiosurgery - NOS
- Stereotactic Radiotherapy/Radiosurgery – Robotic
- Stereotactic Radiotherapy/Radiosurgery – Gamma Knife
- CT-Guided Online Adaptive Therapy
- MR-Guided Online Adaptive Therapy
External Beam Radiation Therapy

- Conventional external beam radiation therapy (2DXRT)
- Three-dimensional conformal radiation therapy (3D-CRT)
- Image guided radiation therapy (IGRT)
- Intensity modulated radiation therapy (IMRT)
- Helical-tomotherapy
- Photon beam radiation therapy
- Proton beam radiation therapy
- Stereotactic radiosurgery
- Intraoperative radiation therapy (IORT)
- Stereotactic body radiation therapy (SBRT)
- Volumetric modulated arc therapy (VMAT)
- High Definition Radiotherapy (HDRT) & High Definition Radiosurgery (HDRS)

https://www.cancer.org/treatments/radiation/basics.html
Internal Radiation Therapy - Brachytherapy

- Internal radiation therapy (brachytherapy) allows a higher dose of radiation in a smaller area than might be possible with external radiation treatment.

- It uses a radiation source that's usually sealed in a small holder called an implant. Different types of implants may be called pellets, seeds, ribbons, wires, needles, capsules, balloons, or tubes.

- No matter which type of implant is used, it is placed in your body, very close to or inside the tumor. This way the radiation harms as few normal cells as possible.

- During intracavitary radiation, the radioactive source is placed in a body cavity (space), such as the rectum or uterus.

- With interstitial radiation, the implants are placed in or near the tumor, but not in a body cavity.

https://www.cancer.org/treatments/radiation/basics.html
High Dose or Low Dose Brachytherapy?

- High-dose-rate (HDR) brachytherapy allows a person to be treated for only a few minutes at a time with a powerful radioactive source that’s put in the applicator.

- The source is removed after several minutes. This may be repeated over the course of a few days to weeks. The radioactive material is not left in your body. The applicator might be left in place between treatments, or it might be put in before each treatment.

- Low-dose-rate (LDR) brachytherapy allows the implant to give off lower doses of radiation over a longer period.

- Some implants are left in from 1 to a few days and then removed. You’ll probably have to stay in the hospital, sometimes in a special room, during treatment. For larger implants, you might have to stay in bed and lie still to keep it from moving.

- Some smaller implants (such as the seeds or pellets) are left in place – they’re never taken out. Over the course of several weeks they stop giving off radiation. The seeds are about the size of rice grains and rarely cause problems. If your implants are to be left in, you may be able to go home the same day they’re put in.

https://www.cancer.org/treatments/radiation/basics.html
Certain cancers, such as thyroid, bone, and prostate are treated with radiopharmaceuticals (radioactive drugs). A radiopharmaceutical is a liquid drug made up of a radioactive substance. It is sometimes bound to a special antibody (called a monoclonal antibody) that attaches to the cancer cells. Examples of radiopharmaceuticals used for systemic radiation include radioactive iodine, strontium, samarium, and radium.

These drugs may be given in a vein (IV) or taken by mouth. They travel in the blood throughout the body. The antibody makes them attach to the cancer cells. They then give off their radiation and kill the cancer cells.

Radioisotopes – I-131, Strontium-90, Strontium-89, Radium-223

Radioimmunotherapy

https://www.cancer.org/treatments/radiation/basics.html
Types of Radiation Therapy Devices

- Most are referred to by who makes the machine/device
 - Varian
 - Siemans
 - Elekta
 - Accuray
 - C.R. Bard
 - IBA Worldwide

- CT Simulators for Treatment Planning
- Linear Accelerator or ‘linac’ for External Beam Radiation
- Stereotactic Delivery - Gamma Knife, X-Knife, CyberKnife, Clinac
- Implants (Brachytherapy)
 - Radioactive seeds - implants
 - MammoSite – catheter
 - Savi Breast Brachytherapy - catheter
 - High Dose Remote Afterloader – catheter
 - TheraSphere – radio embolization – glass beads via catheter
Radiation Therapy Delivery – Modality

<table>
<thead>
<tr>
<th>Code</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No radiation treatment</td>
</tr>
<tr>
<td>01</td>
<td>External beam, NOS</td>
</tr>
<tr>
<td>02</td>
<td>External beam, photons</td>
</tr>
<tr>
<td>03</td>
<td>External beam, protons</td>
</tr>
<tr>
<td>04</td>
<td>External beam, electrons</td>
</tr>
<tr>
<td>05</td>
<td>External beam, neutrons</td>
</tr>
<tr>
<td>06</td>
<td>External beam, carbon ions</td>
</tr>
<tr>
<td>07</td>
<td>Brachytherapy, NOS</td>
</tr>
<tr>
<td>08</td>
<td>Brachytherapy, intracavitary, LDR</td>
</tr>
<tr>
<td>09</td>
<td>Brachytherapy, intracavitary, HDR</td>
</tr>
<tr>
<td>10</td>
<td>Brachytherapy, Interstitial, LDR</td>
</tr>
<tr>
<td>11</td>
<td>Brachytherapy, Interstitial, HDR</td>
</tr>
<tr>
<td>12</td>
<td>Brachytherapy, electronic</td>
</tr>
<tr>
<td>13</td>
<td>Radioisotopes, NOS</td>
</tr>
<tr>
<td>14</td>
<td>Radioisotopes, Radium-223</td>
</tr>
<tr>
<td>15</td>
<td>Radioisotopes, Strontium-89</td>
</tr>
<tr>
<td>16</td>
<td>Radioisotopes, Strontium-90</td>
</tr>
<tr>
<td>99</td>
<td>Radiation treatment modality unknown; Unknown if radiation treatment administered</td>
</tr>
</tbody>
</table>
Case Studies for Coding Radiation Therapy

CTR Guide to Coding Radiation Therapy Treatment in the STORE

Version 1.0 March 15, 2019

Prepared by

Ted Williamson, MD, PhD, CTR
Salem Health Radiation Oncology (Emeritus)
Medical Director, Onco, Inc.

Wilson Apollo, MS, RTT, CTR
WHA Consulting

Susanne Kowal, MSM, RHT, CTR
Manager, NCDB Information and Data Standards,
Commission on Cancer

John Christodoulou, MD, MPH
Department of Radiation Oncology,
Hospital of the University of Pennsylvania
Medical Affairs, Elekta Inc.

On behalf of the Commission on Cancer Radiation Oncology Working Group

Table of Contents

Revision History ... 3
Introduction .. 4
Summary of Coding Principles .. 4
Looking to the Future ... 7
Case Studies .. 8
 # 1 No Radiation Therapy .. 8
 # 2 Single Target Volume - Single Phase 9
 # 3 Thyroid Cancer Treated with Radiosurgery 10
 # 4 Prostate Cancer: Boost First, Elsewhere 11
 # 5 Breast and Regional Nodes with Breast Boost 12
 # 6 Prostate Cancer with Concurrent Prostate and 5V Boost 13
 # 7 Multiple Metastatic Sites Treated Concurrently 14
 # 8 How Many Phases? ... 15
 # 9 How many phases with prophylactic cranial irradiation (PCI)? 16
 # 10 Total Body Irradiation for Transplant 17
 # 11 Head and Neck Treatment - Simultaneous Integrated Boost (SIB) 18
 # 12 On-Line Adaptive Therapy with an MR-Linac 19

Appendix A - STORE Radiation Data Field Items 20
 Summary Fields .. 20
 Phase Fields ... 21

Appendix B - Coding Modality for the Heavy Equipment of Modern Radiation Therapy 22

Appendix C - Radiation Therapy Useful Abbreviations 23
Resources

- American Cancer Society
- ASTRO – American Society for Radiation Oncology
- NCI – National Cancer Institute – About Cancer – Radiation Therapy
- NCI SEER – Surveillance, Epidemiology and End Results Program
- Commission on Cancer/American College of Surgeons
- CoC STORE Manual and Case Studies Coding Radiation Treatment
- Varian Medical Systems – Future of Radiation Therapy, Jan 2016
- Elekta – Motion Enable in Radiation – Volumetric Arc Therapy (VMAT)
- An Overview on Radiotherapy: From Its History to Its Current Applications in Dermatology, Global Dermatology/oamjms.2017.122
Questions

X-RAY
RADIIUM
SURGERY

THE THREE RECOGNIZED TREATMENTS FOR CANCER

CONSULT YOUR DOCTOR OR HEALTH BUREAU